已知数列{an}的前n项和为Sn=(n+1)^2+c,探究{an}是等差数列的充要条件
展开全部
c=-1
证明:充分性:c=-1时,Sn=n^2+2n
an=Sn-Sn-1=2n+1(n>1)
a1=3满足上式。
an-an-1=2,即{an}是等差数列
必要性:若{an}是等差数列,设an=pn+q(p,q∈R)
Sn=p(1+2+……+n)+qn=p/2*n(n+1)+qn=p/2*n^2+(p/2+q)n
即没有常数项
观察Sn,易得c=-1
证明:充分性:c=-1时,Sn=n^2+2n
an=Sn-Sn-1=2n+1(n>1)
a1=3满足上式。
an-an-1=2,即{an}是等差数列
必要性:若{an}是等差数列,设an=pn+q(p,q∈R)
Sn=p(1+2+……+n)+qn=p/2*n(n+1)+qn=p/2*n^2+(p/2+q)n
即没有常数项
观察Sn,易得c=-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
Sn-S(n-1)=2n+1=an
an-a(n-1)=2 所以an是等差数列
假设an不是等差数列,则an-a(n-1)=d=Sn-S(n-1)-S(n-1)+S(n-2)=(n+1)^2-2(n-1+1)^2+(n-2+1)^2=2 即an-a(n-1)=2 ,假设不成立,即 an是等差数列
an-a(n-1)=2 所以an是等差数列
假设an不是等差数列,则an-a(n-1)=d=Sn-S(n-1)-S(n-1)+S(n-2)=(n+1)^2-2(n-1+1)^2+(n-2+1)^2=2 即an-a(n-1)=2 ,假设不成立,即 an是等差数列
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询