如图,在三角形ABC中CD是AB边上的高,且CD的平方=AD乘以BD,试说明三角形ABC是直角三角形!
3个回答
展开全部
也可以这样证明:
AC^2-AD^2=CD^2
BC^2-BD^2=CD^2
AC^2+BC^2-(AD^2+BD^2)=2CD^2
AC^2+BC^2
=2CD^2+(AD^2+BD^2)
=2CD^2+(AD+BD)^2-2AD*BD
=(AD+BD)^2+2(CD^2-2AD*BD)
=AB^2+2(CD^2-2AD*BD)
已知CD^2=AD*BD,
故AC^2+BC^2=AB^2
故△ABC是直角三角形。
AC^2-AD^2=CD^2
BC^2-BD^2=CD^2
AC^2+BC^2-(AD^2+BD^2)=2CD^2
AC^2+BC^2
=2CD^2+(AD^2+BD^2)
=2CD^2+(AD+BD)^2-2AD*BD
=(AD+BD)^2+2(CD^2-2AD*BD)
=AB^2+2(CD^2-2AD*BD)
已知CD^2=AD*BD,
故AC^2+BC^2=AB^2
故△ABC是直角三角形。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-10-15
展开全部
试试用相似三角形证吧
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询