解锐角三角函数题型
1个回答
展开全部
1、A,B,C为三角形内角,已知1+cos2A-cos2B-cos2C=2sinBsinC,求角A
解:1+cos2A-cos2B-cos2C=2sinBsinC
2cos²A-1-2cos²B+1+2sin²C=2sinBsinC
cos²A-cos²B+sin² (A+B)=sinBsinC
cos²A-cos²B+sin²Acos²B+2sinAcosAsinBcosB+cos²Asin²B=sinBsinC
cos²A-cos²Acos²B+2sinAcosAsinBcosB+cos²Asin²B=sinBsinC
2cos²AsinB+2sinAcosAcosB=sin(180-A-B)
2cosA(cosAsinB+sinAcosB)-sin(A+B)=0
Sin(A+B)(2cosA-1)=0
cosA=1/2
A=60
2、证明:(1+sinα+cosα+2sinαcosα)/(1+sinα+cosα)=sinα+cosα
<===>1+sina+cosa+2sinacosa=sina+cosa+(sina+cosa)²
<===>1+sina+cosa+2sinacosa=sina+cosa+1+2sinacosa
<===>0=0恒成立
以上各步可逆,原命题成立
证毕
这是一部分
需要的话,给我邮箱发给你
解:1+cos2A-cos2B-cos2C=2sinBsinC
2cos²A-1-2cos²B+1+2sin²C=2sinBsinC
cos²A-cos²B+sin² (A+B)=sinBsinC
cos²A-cos²B+sin²Acos²B+2sinAcosAsinBcosB+cos²Asin²B=sinBsinC
cos²A-cos²Acos²B+2sinAcosAsinBcosB+cos²Asin²B=sinBsinC
2cos²AsinB+2sinAcosAcosB=sin(180-A-B)
2cosA(cosAsinB+sinAcosB)-sin(A+B)=0
Sin(A+B)(2cosA-1)=0
cosA=1/2
A=60
2、证明:(1+sinα+cosα+2sinαcosα)/(1+sinα+cosα)=sinα+cosα
<===>1+sina+cosa+2sinacosa=sina+cosa+(sina+cosa)²
<===>1+sina+cosa+2sinacosa=sina+cosa+1+2sinacosa
<===>0=0恒成立
以上各步可逆,原命题成立
证毕
这是一部分
需要的话,给我邮箱发给你
追问
感谢 我的邮箱是chaohonghai@qq.com
多谢!!!
追答
稍等。已经发送
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询