已知抛物线y^2=2px,直线l斜率为k经过焦点f与抛物线交于A,B求1\AF+1\BF的值。
1个回答
展开全部
设抛物线y²=2px(p>0),焦点坐标为F(p/2,0),A(x1,y1),B(x2,y2),
过点F的直线方程为x=my+(p/2),
代入y²=2px,得y²=2pmy-p²=0,∴y1y2= -p²,
x1x2=(y1²/2p) (y2²/2p)=p²/4.
由抛物线的定义可知,AF=x1+(p/2),BF=x2+(p/2),
∴1/AF+1/BF
=1/[ x1+(p/2)]+1/[ x2+(p/2)]
=(x1+x2+p)/[x1x2+p(x1+x2)/2+(p²/4)] (通分化简)
将x1x2= p²/4,x1+x2=AB-p,代入上式,得
1/AF+1/BF=AB/[(p²/4)+p(AB-p)/2+(p²/4)]=2/p,
即1/AF+1/BF=2/p.
过点F的直线方程为x=my+(p/2),
代入y²=2px,得y²=2pmy-p²=0,∴y1y2= -p²,
x1x2=(y1²/2p) (y2²/2p)=p²/4.
由抛物线的定义可知,AF=x1+(p/2),BF=x2+(p/2),
∴1/AF+1/BF
=1/[ x1+(p/2)]+1/[ x2+(p/2)]
=(x1+x2+p)/[x1x2+p(x1+x2)/2+(p²/4)] (通分化简)
将x1x2= p²/4,x1+x2=AB-p,代入上式,得
1/AF+1/BF=AB/[(p²/4)+p(AB-p)/2+(p²/4)]=2/p,
即1/AF+1/BF=2/p.
参考资料: http://zhidao.baidu.com/question/180686359.html?an=0&si=10
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询