在三角形ABC中角A=90度点D在BC上角EDB=1/2角C,BE垂直于DE,DE与AB交于点F,当AB=AC时BE与FD有可关系

河南汇能树脂123
2013-02-14
知道答主
回答量:19
采纳率:0%
帮助的人:4.2万
展开全部
BE=1/2FD
证明:
过点D作DG∥CA,与BE的延长线交于点G,与AB交于点H
则∠BDG=∠C,∠BHD=∠A=90°=∠BHG
∵∠EDB=1/2∠C
∴∠EDB=1/2∠BDG
又∠BDG=∠EDB+∠EDG
∴∠EDB=∠EDG
又DE=DE,∠DEB=∠DEG=90°
∴△DEB≌△DEG(ASA)
∴BE=GE=1/2BG
∵∠A=90°,AB=AC
∴∠ABC=∠C=∠GDB
∴HB=HD
∵∠BED=∠BHD=90°,∠BFE=∠DFH(对顶角相等)
∴∠EBF=∠HDF
∴△GBH≌△FDH(ASA)
∴GB=FD
∵BE=1/2BG
∴BE=1/2FD
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
董闹闹
2012-11-24
知道答主
回答量:31
采纳率:0%
帮助的人:10.1万
展开全部
BE=1/2FD
证明:
过点D作DG∥CA,与BE的延长线交于点G,与AB交于点H
则∠BDG=∠C,∠BHD=∠A=90°=∠BHG
∵∠EDB=1/2∠C
∴∠EDB=1/2∠BDG
又∠BDG=∠EDB+∠EDG
∴∠EDB=∠EDG
又DE=DE,∠DEB=∠DEG=90°
∴△DEB≌△DEG(ASA)
∴BE=GE=1/2BG
∵∠A=90°,AB=AC
∴∠ABC=∠C=∠GDB
∴HB=HD
∵∠BED=∠BHD=90°,∠BFE=∠DFH(对顶角相等)
∴∠EBF=∠HDF
∴△GBH≌△FDH(ASA)
∴GB=FD
∵BE=1/2BG
∴BE=1/2FD
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友eac6906
2014-06-11 · TA获得超过208个赞
知道答主
回答量:121
采纳率:100%
帮助的人:24.8万
展开全部
啦啦啦
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式