在三角形ABC中角A=90度点D在BC上角EDB=1/2角C,BE垂直于DE,DE与AB交于点F,当AB=AC时BE与FD有可关系
8个回答
展开全部
BE=1/2FD
证明:
过点D作DG∥CA,与BE的延长线交于点G,与AB交于点H
则∠BDG=∠C,∠BHD=∠A=90°=∠BHG
∵∠EDB=1/2∠C
∴∠EDB=1/2∠BDG
又∠BDG=∠EDB+∠EDG
∴∠EDB=∠EDG
又DE=DE,∠DEB=∠DEG=90°
∴△DEB≌△DEG(ASA)
∴BE=GE=1/2BG
∵∠A=90°,AB=AC
∴∠ABC=∠C=∠GDB
∴HB=HD
∵∠BED=∠BHD=90°,∠BFE=∠DFH(对顶角相等)
∴∠EBF=∠HDF
∴△GBH≌△FDH(ASA)
∴GB=FD
∵BE=1/2BG
∴BE=1/2FD
证明:
过点D作DG∥CA,与BE的延长线交于点G,与AB交于点H
则∠BDG=∠C,∠BHD=∠A=90°=∠BHG
∵∠EDB=1/2∠C
∴∠EDB=1/2∠BDG
又∠BDG=∠EDB+∠EDG
∴∠EDB=∠EDG
又DE=DE,∠DEB=∠DEG=90°
∴△DEB≌△DEG(ASA)
∴BE=GE=1/2BG
∵∠A=90°,AB=AC
∴∠ABC=∠C=∠GDB
∴HB=HD
∵∠BED=∠BHD=90°,∠BFE=∠DFH(对顶角相等)
∴∠EBF=∠HDF
∴△GBH≌△FDH(ASA)
∴GB=FD
∵BE=1/2BG
∴BE=1/2FD
展开全部
过D作DH垂直AB于H。所以,AC平行HD,所以角C等于角HDB,所以角HDF=角FDB=角EBF,三角形BFE与三角形DBE相似。所以,BE的平方=FD*ED。ED=BE除以22.5度的正切(tanEDB=tan22.5=BE/HD)^^^^^^^^
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
作FG平行于AC,GK垂直平分FD,交FD于O,交BC于G,交AC于K,
因为三角形ENF相似于三角形EBD,
所以角EFB=67.5度,
因为FG=GD,
所以角CFD=角CDF=22.5度,
因为GK垂直ED,
所以角FGK=67,5度,
因为角FBG=角FGB=45度,
所以FB=FG,
所以三角形EBF全等于三角形FGO,
所以FB=2EB。
因为三角形ENF相似于三角形EBD,
所以角EFB=67.5度,
因为FG=GD,
所以角CFD=角CDF=22.5度,
因为GK垂直ED,
所以角FGK=67,5度,
因为角FBG=角FGB=45度,
所以FB=FG,
所以三角形EBF全等于三角形FGO,
所以FB=2EB。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
BE=1/2FD
证明:
过点D作DG∥CA,与BE的延长线交于点G,与AB交于点H
则∠BDG=∠C,∠BHD=∠A=90°=∠BHG
∵∠EDB=1/2∠C
∴∠EDB=1/2∠BDG
又∠BDG=∠EDB+∠EDG
∴∠EDB=∠EDG
又DE=DE,∠DEB=∠DEG=90°
∴△DEB≌△DEG(ASA)
∴BE=GE=1/2BG
∵∠A=90°,AB=AC
∴∠ABC=∠C=∠GDB
∴HB=HD
∵∠BED=∠BHD=90°,∠BFE=∠DFH(对顶角相等)
∴∠EBF=∠HDF
∴△GBH≌△FDH(ASA)
∴GB=FD
∵BE=1/2BG
∴BE=1/2FD
证明:
过点D作DG∥CA,与BE的延长线交于点G,与AB交于点H
则∠BDG=∠C,∠BHD=∠A=90°=∠BHG
∵∠EDB=1/2∠C
∴∠EDB=1/2∠BDG
又∠BDG=∠EDB+∠EDG
∴∠EDB=∠EDG
又DE=DE,∠DEB=∠DEG=90°
∴△DEB≌△DEG(ASA)
∴BE=GE=1/2BG
∵∠A=90°,AB=AC
∴∠ABC=∠C=∠GDB
∴HB=HD
∵∠BED=∠BHD=90°,∠BFE=∠DFH(对顶角相等)
∴∠EBF=∠HDF
∴△GBH≌△FDH(ASA)
∴GB=FD
∵BE=1/2BG
∴BE=1/2FD
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
BE=1/2FD
证明:
过点D作DG∥CA,与BE的延长线交于点G,与AB交于点H
则∠BDG=∠C,∠BHD=∠A=90°=∠BHG
∵∠EDB=1/2∠C
∴∠EDB=1/2∠BDG
又∠BDG=∠EDB+∠EDG
∴∠EDB=∠EDG
又DE=DE,∠DEB=∠DEG=90°
∴△DEB≌△DEG(ASA)
∴BE=GE=1/2BG
∵∠A=90°,AB=AC
∴∠ABC=∠C=∠GDB
∴HB=HD
∵∠BED=∠BHD=90°,∠BFE=∠DFH(对顶角相等)
∴∠EBF=∠HDF
∴△GBH≌△FDH(ASA)
∴GB=FD
∵BE=1/2BG
∴BE=1/2FD
证明:
过点D作DG∥CA,与BE的延长线交于点G,与AB交于点H
则∠BDG=∠C,∠BHD=∠A=90°=∠BHG
∵∠EDB=1/2∠C
∴∠EDB=1/2∠BDG
又∠BDG=∠EDB+∠EDG
∴∠EDB=∠EDG
又DE=DE,∠DEB=∠DEG=90°
∴△DEB≌△DEG(ASA)
∴BE=GE=1/2BG
∵∠A=90°,AB=AC
∴∠ABC=∠C=∠GDB
∴HB=HD
∵∠BED=∠BHD=90°,∠BFE=∠DFH(对顶角相等)
∴∠EBF=∠HDF
∴△GBH≌△FDH(ASA)
∴GB=FD
∵BE=1/2BG
∴BE=1/2FD
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询