已知直线y=x+b与抛物线x^2=2y交于A,B两点,且OA垂直于OB(O为坐标原点),求b的取值范围请写清楚过程谢谢
展开全部
y = x + b = x²/2
x² - 2x -2b = 0
x1 = 1+ √(1+2b), y1 = 1+b + √(1+2b), OA的斜率为k1 = [1+b + √(1+2b)]/[1+ √(1+2b)]
x2 = 1- √(1+2b), y2 = 1+b -√(1+2b), OB的斜率为k2 = [1+b - √(1+2b)]/[1- √(1+2b)]
OA垂直于OB, k1*k2 = -1
[(1+b)² - 1-2b]/[1 - 1 -2b] = b²/(-2b) = -1
b² = 2b
b = 0 (A,B重合,舍去)
b = 2
x² - 2x -2b = 0
x1 = 1+ √(1+2b), y1 = 1+b + √(1+2b), OA的斜率为k1 = [1+b + √(1+2b)]/[1+ √(1+2b)]
x2 = 1- √(1+2b), y2 = 1+b -√(1+2b), OB的斜率为k2 = [1+b - √(1+2b)]/[1- √(1+2b)]
OA垂直于OB, k1*k2 = -1
[(1+b)² - 1-2b]/[1 - 1 -2b] = b²/(-2b) = -1
b² = 2b
b = 0 (A,B重合,舍去)
b = 2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询