如图,在平行四边ABCD中,E F分别为边AB CD的中点,BD是对角线,过A点作AG∥DB交CB的延长线于点G(1)求证

Two年恭祝happy
2011-10-19 · TA获得超过5905个赞
知道小有建树答主
回答量:289
采纳率:0%
帮助的人:109万
展开全部
证明:(1)∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD.
∵点E、F分别是AB、CD的中点
∴BE= 1/2AB,DF= 1/2CD.
∴BE=DF,BE∥DF,
∴四边形DFBE是平行四边形,
∴DE∥BF,
(2)∵∠G=90°,AG∥BD,AD∥BG,
∴四边形AGBD是矩形,∠ADB=90°,
∵E为AB的中点,
∴DE=BE,
∵四边形DFBE是平行四边形,
∴四边形DEBF是菱形.
王松涛哦
2011-10-17
知道答主
回答量:3
采纳率:0%
帮助的人:4990
展开全部
求证什么?
追问
(1)求证:DE∥BF(2)若∠G=90°,求证:四边形DEBF是菱形
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式