2011-10-17 · 知道合伙人教育行家
关注
展开全部
令0<x1<x2
f(x2)-f(x1) = (x2^2 - 1/x2) - (x1^2 - 1/x1)
= (x2^2-x1^2) - (1/x2 - 1/x1)
= (x2+x1)(x2-x1) - (x1-x2)/(x1x2)
= (x2+x1)(x2-x1) + (x2-x1)/(x1x2)
= (x2-x1) { (x2+x1)+1/(x1x2)}
∵0<x1<x2,∴x2-x1>0
∵0<x1<x2,∴ (x2+x1)+1/(x1x2)>0
∴f(x2)-f(x1) = (x2-x1) { (x2+x1)+1/(x1x2)} >0
∴f(x2)>f(x1) ,f(x)在(0,+∞)上是增函数
f(x2)-f(x1) = (x2^2 - 1/x2) - (x1^2 - 1/x1)
= (x2^2-x1^2) - (1/x2 - 1/x1)
= (x2+x1)(x2-x1) - (x1-x2)/(x1x2)
= (x2+x1)(x2-x1) + (x2-x1)/(x1x2)
= (x2-x1) { (x2+x1)+1/(x1x2)}
∵0<x1<x2,∴x2-x1>0
∵0<x1<x2,∴ (x2+x1)+1/(x1x2)>0
∴f(x2)-f(x1) = (x2-x1) { (x2+x1)+1/(x1x2)} >0
∴f(x2)>f(x1) ,f(x)在(0,+∞)上是增函数
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询