判断下面函数的连续性若存在间断点判别其类型

y=lim{[(1-x^2n)/1+x^2n]x}n趋向于无穷大... y=lim{[(1-x^2n)/1+x^2n]x} n趋向于无穷大 展开
heanmen
2011-10-27 · TA获得超过1.7万个赞
知道大有可为答主
回答量:4283
采纳率:100%
帮助的人:2567万
展开全部
解:∵y=lim(x->∞){[(1-x^2n)/(1+x^2n)]x}
∴当│x│<1时,y=x
当│x│=1时,y=0
当│x│>1时,y=-x
∵lim(x->1+)y=lim(x->1+)(-x)=-1
lim(x->1-)y=lim(x->1-)(x)=1
∴lim(x->1+)y≠lim(x->1-)y,即x=1是第一类间断点
∵lim(x->-1+)y=lim(x->-1+)(x)=-1
lim(x->-1-)y=lim(x->-1-)(-x)=1
∴lim(x->-1+)y≠lim(x->-1-)y,即x=-1是第一类间断点
故此函数只有两个是第一类间断点,它们分别是x=1与x=-1。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式