
已知a≥,m²-2am+2=0,n²-2an+2=0,则(m-1)²+(n-1)²最小值是
1个回答
展开全部
解:∵m2﹣2am+2=0,n2﹣2an+2=0,
∴m,n是关于x的方程x2﹣2ax+2=0的两个根,
∴m+n=2a,mn=2,
∴(m﹣1)2+(n﹣1)2=m2﹣2m+1+n2﹣2n+1=(m+n)2﹣2mn﹣2(m+n)+2=4a2﹣4﹣4a+2=4(a﹣)2﹣3,
∵a≥2,
∴当a=2时,(m﹣1)2+(n﹣1)2有最小值,
∴(m﹣1)2+(n﹣1)2的最小值=4(a﹣)2+3=4(2﹣)2﹣3=6
∴m,n是关于x的方程x2﹣2ax+2=0的两个根,
∴m+n=2a,mn=2,
∴(m﹣1)2+(n﹣1)2=m2﹣2m+1+n2﹣2n+1=(m+n)2﹣2mn﹣2(m+n)+2=4a2﹣4﹣4a+2=4(a﹣)2﹣3,
∵a≥2,
∴当a=2时,(m﹣1)2+(n﹣1)2有最小值,
∴(m﹣1)2+(n﹣1)2的最小值=4(a﹣)2+3=4(2﹣)2﹣3=6
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询