等差数列
数列{an}中,an+1+an=3n-54(n属于N+)(1)若a1=-20,求{an}的通项公式an(2)设Sn为{an}的前n项和,当a1>-27时,求Sn的最小值...
数列{an}中,an+1+an=3n-54 (n属于N+)
(1)若a1=-20,求{an}的通项公式an
(2)设Sn为{an}的前n项和,当a1>-27时,求Sn的最小值 展开
(1)若a1=-20,求{an}的通项公式an
(2)设Sn为{an}的前n项和,当a1>-27时,求Sn的最小值 展开
展开全部
数列{an}中,a<n+1>+an=3n-54 ,①
以n+1代n,得a<n+2>+a<n+1>=3n-51,②
②-①,a<n+2>-an=3,
(1)由①,a2+a1=-51,a1=-20,
∴a2=-31.
∴a<2k-1>=-20+3(k-1)=3k-23=(3/2)(2k-1)-43/2,k∈N+,
a<2k>=-31+3(k-1)=3k-34,
综上,an=3n/2-111/4-(25/4)(-1)^n.
(2)a1>-27时a2<-24
Sn最小,
<==>an=Sn-S<n-1><=0,且a<n+1>=S<n+1>-Sn>=0,
<==>a1<=a2时,a1<=-51/2<=a2,
a<2k-1>=a1+3(k-1)<=0,a<2k>=a2+3(k-1)>=0,
9<k<10,无解;
a1>a2时a1>-51/2>a2,a<2k>=a2+3(k-1)<=0,a<2k+1>=a1+3k>=0,
k=9,a18<0<a19,
S18最小,S18=9(a1+a2)+9*8*3=-243.
以n+1代n,得a<n+2>+a<n+1>=3n-51,②
②-①,a<n+2>-an=3,
(1)由①,a2+a1=-51,a1=-20,
∴a2=-31.
∴a<2k-1>=-20+3(k-1)=3k-23=(3/2)(2k-1)-43/2,k∈N+,
a<2k>=-31+3(k-1)=3k-34,
综上,an=3n/2-111/4-(25/4)(-1)^n.
(2)a1>-27时a2<-24
Sn最小,
<==>an=Sn-S<n-1><=0,且a<n+1>=S<n+1>-Sn>=0,
<==>a1<=a2时,a1<=-51/2<=a2,
a<2k-1>=a1+3(k-1)<=0,a<2k>=a2+3(k-1)>=0,
9<k<10,无解;
a1>a2时a1>-51/2>a2,a<2k>=a2+3(k-1)<=0,a<2k+1>=a1+3k>=0,
k=9,a18<0<a19,
S18最小,S18=9(a1+a2)+9*8*3=-243.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:(1)∵ {an+1+an=3n-54an+2+an+1=3n-51,两式相减得an+2-an=3,
∴a1,a3,a5,,与a2,a4,a6,都是d=3的等差数列
∵a1=-20
∴a2=-31,
①当n为奇数时, an=-20+(n+1/2-1)×3=3n-43/2;
②当n为偶数时, an=-31+(n/2-1)×3=3n-68/2;
(2)①当n为偶数时,Sn=(a1+a2)+(a3+a4)++(an-1+an)
=(3×1-54)+(3×3-54)++[3(n-1)-54]=3[1+3+5++(n-1)]- n/2×54= 3/4n^2-27n=3/4(n-18)^2-243,
∴当n=18时,(Sn)min=-243;
②当n为奇数时,Sn=a1+(a2+a3)++(an-1+an)= 3/4n^2-27n+105/4+a1=3/4(n-18)^2-216*3/4+a1,
∴当n=17或19时(Sn)min=a1-216>-243;综上,当n=18时(Sn)min=-243.
∴a1,a3,a5,,与a2,a4,a6,都是d=3的等差数列
∵a1=-20
∴a2=-31,
①当n为奇数时, an=-20+(n+1/2-1)×3=3n-43/2;
②当n为偶数时, an=-31+(n/2-1)×3=3n-68/2;
(2)①当n为偶数时,Sn=(a1+a2)+(a3+a4)++(an-1+an)
=(3×1-54)+(3×3-54)++[3(n-1)-54]=3[1+3+5++(n-1)]- n/2×54= 3/4n^2-27n=3/4(n-18)^2-243,
∴当n=18时,(Sn)min=-243;
②当n为奇数时,Sn=a1+(a2+a3)++(an-1+an)= 3/4n^2-27n+105/4+a1=3/4(n-18)^2-216*3/4+a1,
∴当n=17或19时(Sn)min=a1-216>-243;综上,当n=18时(Sn)min=-243.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |