如图,△ABC,BD是角平分线,AB=AC,若AB+DC=BC,求∠A的度数
1个回答
展开全部
在BC上取一点E,使得:BE = AB ;
则有:CE = BC-BE = BC-AB = CD ,
而且,AB = AC ,可得:
∠C = (1/2)(180°-∠A) = 90°-(1/2)∠A ,
∠CED = ∠CDE = (180°-∠C)/2 = 45°+(1/4)∠A ;
因为,在△ABD和△EBD中,AB = EB ,∠ABD = ∠EBD ,BD为公共边,
所以,△ABD ≌ △EBD ,
可得:∠A = ∠BED ;
因为,180° = ∠CED+∠BED = 45°+(1/4)∠A+∠A = 45°+(5/4)∠A ,
所以,∠A = 108° 。
则有:CE = BC-BE = BC-AB = CD ,
而且,AB = AC ,可得:
∠C = (1/2)(180°-∠A) = 90°-(1/2)∠A ,
∠CED = ∠CDE = (180°-∠C)/2 = 45°+(1/4)∠A ;
因为,在△ABD和△EBD中,AB = EB ,∠ABD = ∠EBD ,BD为公共边,
所以,△ABD ≌ △EBD ,
可得:∠A = ∠BED ;
因为,180° = ∠CED+∠BED = 45°+(1/4)∠A+∠A = 45°+(5/4)∠A ,
所以,∠A = 108° 。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询