函数y=1/根号下log以0.5为底(4x-3)的定义域为
3个回答
展开全部
y=1/√log0.5 (4x-3)
由,根号内的值不能小于0, 且分母不能为0
那么 log0.5 (4x-3) >0 , 则 0<4X-3<1 解得: 3/4<X<1
定义域为: X∈ (3/4 1)
(备注:关于 log(a) x 函数, 以a为底的X的对数函数,定义域为 X>0
当a>0时 为增函数,且0<X<1时,函数值<0
x>1时,函数值>0
当a<0时 为减函数,且0<X<1时,函数值>0
x>1时,函数值<0 )
)
由,根号内的值不能小于0, 且分母不能为0
那么 log0.5 (4x-3) >0 , 则 0<4X-3<1 解得: 3/4<X<1
定义域为: X∈ (3/4 1)
(备注:关于 log(a) x 函数, 以a为底的X的对数函数,定义域为 X>0
当a>0时 为增函数,且0<X<1时,函数值<0
x>1时,函数值>0
当a<0时 为减函数,且0<X<1时,函数值>0
x>1时,函数值<0 )
)
参考资料: g
展开全部
log0.5(4x-3)>0
log0.5(4x-3)>log0.5 1
因为底数是0<0.5<1,所以在(0,正无穷大)上单调减
所以4x-3<1
4x<4 即x<1
说以定义域为(负无穷大,1)
log0.5(4x-3)>log0.5 1
因为底数是0<0.5<1,所以在(0,正无穷大)上单调减
所以4x-3<1
4x<4 即x<1
说以定义域为(负无穷大,1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
其实这样的题目并不难,为您说一下思路以后遇到类似的就能迎刃而解了
在题干中我们知道目标是X的取值范围
那么先看函数的整体,首先目标在分母,那么分母不为0
其次又是在根号下的,那么根号下内容要大于0,即log0.5(4x-3)>0
我们知道log函数的图像,当底数>1,是在坐标右侧单调递增的,底数<1,同样是坐标右侧但是单调递减的(这些其实在解题时自己画个草图会有助于您的解题)
我们现在的底数是0.5,那么只有上面在0到1之间就行了,所以0<4x-3<1
最后不等式求一下,得到3/4<x<1
在题干中我们知道目标是X的取值范围
那么先看函数的整体,首先目标在分母,那么分母不为0
其次又是在根号下的,那么根号下内容要大于0,即log0.5(4x-3)>0
我们知道log函数的图像,当底数>1,是在坐标右侧单调递增的,底数<1,同样是坐标右侧但是单调递减的(这些其实在解题时自己画个草图会有助于您的解题)
我们现在的底数是0.5,那么只有上面在0到1之间就行了,所以0<4x-3<1
最后不等式求一下,得到3/4<x<1
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询