如图,四边形ABCD内接于圆,对角线AC与BD相交于点E、F在AC上,AB=AD,∠BFC=∠BAD=2∠DFC已知
5个回答
展开全部
解答要点:
1)
作直径AG,连接BG
则∠ABG是直角
所以∠G+∠BAG=90度
因为AB=AD
所以弧AB=弧AD,
所以弧BG=弧DG
所以∠G=∠ACD,∠BAG=∠DAG=∠BAD/2
因为∠BAD=2∠DFC
所以∠DFC=∠BAG
所以∠DFC+∠ACD=90度
所以CD⊥DF
2)
作FH⊥BC
因为弧AB=弧AD
所以∠ACD=∠ACB
因为∠CDF=∠CHF=90度,CF=CF
所以△CDF≌△CHF
所以CD=CH,∠CFD=∠CFH
因为∠BFC=2∠CFD
所以∠BFH=∠CFH=∠CFD
因为∠BHF=∠CHF=90度,FH=FH
所以△CFH≌△BFH
所以BH=CH
所以BH=CH=CD
所以BC=2CD
江苏吴云超解答 供参考!
参考资料: http://hi.baidu.com/jswyc/blog/item/344dafcad87dc6e153664f3f.html
展开全部
证明:(1)∵AB=AD,
∴弧AB=弧AD,∠ADB=∠ABD.
∵∠ACB=∠ADB,∠ACD=∠ABD,
∴∠ACB=∠ADB=∠ABD=∠ACD.
∴∠ADB=(180°-∠BAD)÷2=90°-∠DFC.
∴∠ADB+∠DFC=90°,即∠ACD+∠DFC=90°,
∴CD⊥DF.
(2)过F作FG⊥BC,
∵∠ACB=∠ADB,
又∠BFC=∠BAD,
∴∠FBC=∠ABD=∠ADB=∠ACB.
∴FB=FC.
∴FG平分BC,G为BC中点,∠GFC= ∠BAD=∠DFC.
∴△FGC≌△DFC(∠GFC=∠DFC,FC=FC,∠ACB=∠ACD).
∴CD=GC= BC.
∴BC=2CD.
图片就不传了
∴弧AB=弧AD,∠ADB=∠ABD.
∵∠ACB=∠ADB,∠ACD=∠ABD,
∴∠ACB=∠ADB=∠ABD=∠ACD.
∴∠ADB=(180°-∠BAD)÷2=90°-∠DFC.
∴∠ADB+∠DFC=90°,即∠ACD+∠DFC=90°,
∴CD⊥DF.
(2)过F作FG⊥BC,
∵∠ACB=∠ADB,
又∠BFC=∠BAD,
∴∠FBC=∠ABD=∠ADB=∠ACB.
∴FB=FC.
∴FG平分BC,G为BC中点,∠GFC= ∠BAD=∠DFC.
∴△FGC≌△DFC(∠GFC=∠DFC,FC=FC,∠ACB=∠ACD).
∴CD=GC= BC.
∴BC=2CD.
图片就不传了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)∵AB=AD,
∴弧AB=弧AD,
∠ADB=∠ABD.
∵∠ACB=∠ADB,∠ACD=∠ABD,
∴∠ACB=∠ADB=∠ABD=∠ACD.
∴∠ADB=(180°-∠BAD)÷2=90°-∠DFC.
∴∠ADB+∠DFC=90°,
∠ACD+∠DFC=90°,
∴CD⊥DF.
(2)过F作FG⊥BC,
∵∠ACB=∠ADB,
又∵∠BFC=∠BAD,
∴∠FBC=∠ABD=∠ADB=∠ACB.
∴FB=FC.
∴FG平分BC,G为BC中点,∠GFC= ∠BAD=∠DFC.
又∵∠GFC=∠DFC,FC=FC,∠ACB=∠ACD
∴△FGC≌△DFC
∴CD=GC= BC.
∴BC=2CD.
我也刚做到这题
∴弧AB=弧AD,
∠ADB=∠ABD.
∵∠ACB=∠ADB,∠ACD=∠ABD,
∴∠ACB=∠ADB=∠ABD=∠ACD.
∴∠ADB=(180°-∠BAD)÷2=90°-∠DFC.
∴∠ADB+∠DFC=90°,
∠ACD+∠DFC=90°,
∴CD⊥DF.
(2)过F作FG⊥BC,
∵∠ACB=∠ADB,
又∵∠BFC=∠BAD,
∴∠FBC=∠ABD=∠ADB=∠ACB.
∴FB=FC.
∴FG平分BC,G为BC中点,∠GFC= ∠BAD=∠DFC.
又∵∠GFC=∠DFC,FC=FC,∠ACB=∠ACD
∴△FGC≌△DFC
∴CD=GC= BC.
∴BC=2CD.
我也刚做到这题
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
在三角形ABD和FCB中,∠BAD=∠CFB,由AB=AD,知∠FCB=∠ABD,故∠FBC=∠BDA,因此AD//BC,AB=CD=AD.
再由AB=AD,知∠ACB=∠ACD,又知道∠BAD+∠BCD=180度,即2∠DFC+2∠FCD=180度,所以∠DFC+∠FCD=90度,∠FDC=90度,CD⊥DF
过F做FG⊥BC于G,可知,△FGC与△FDC全等,所以∠DFC=∠GFC=∠BFG,即FG是∠BFC的角平分线,所以FBC是等腰三角形,∠DBC=∠FCB=∠FBC,所以F是AC和BD的交点,从而∠BFC+∠DFC=180度,角DFC=60度,∠FCD=∠FCB=30度,在三角形BDC中,角BDC是直角,角DBC=30度,所以BC=2CD
再由AB=AD,知∠ACB=∠ACD,又知道∠BAD+∠BCD=180度,即2∠DFC+2∠FCD=180度,所以∠DFC+∠FCD=90度,∠FDC=90度,CD⊥DF
过F做FG⊥BC于G,可知,△FGC与△FDC全等,所以∠DFC=∠GFC=∠BFG,即FG是∠BFC的角平分线,所以FBC是等腰三角形,∠DBC=∠FCB=∠FBC,所以F是AC和BD的交点,从而∠BFC+∠DFC=180度,角DFC=60度,∠FCD=∠FCB=30度,在三角形BDC中,角BDC是直角,角DBC=30度,所以BC=2CD
参考资料: http://zhidao.baidu.com/question/233101646.html?an=0&si=2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:(1)∵AB=AD,
∴弧AB=弧AD,∠ADB=∠ABD.
∵∠ACB=∠ADB,∠ACD=∠ABD,
∴∠ACB=∠ADB=∠ABD=∠ACD.
∴∠ADB=(180°-∠BAD)÷2=90°-∠DFC.
∴∠ADB+∠DFC=90°,即∠ACD+∠DFC=90°,
∴CD⊥DF.
(2)过F作FG⊥BC,
∵∠ACB=∠ADB,
又∠BFC=∠BAD,
∴∠FBC=∠ABD=∠ADB=∠ACB.
∴FB=FC.
∴FG平分BC,G为BC中点,∠GFC= ∠BAD=∠DFC.
∴△FGC≌△DFC(∠GFC=∠DFC,FC=FC,∠ACB=∠ACD).
∴CD=GC= BC.
∴BC=2CD.
∴弧AB=弧AD,∠ADB=∠ABD.
∵∠ACB=∠ADB,∠ACD=∠ABD,
∴∠ACB=∠ADB=∠ABD=∠ACD.
∴∠ADB=(180°-∠BAD)÷2=90°-∠DFC.
∴∠ADB+∠DFC=90°,即∠ACD+∠DFC=90°,
∴CD⊥DF.
(2)过F作FG⊥BC,
∵∠ACB=∠ADB,
又∠BFC=∠BAD,
∴∠FBC=∠ABD=∠ADB=∠ACB.
∴FB=FC.
∴FG平分BC,G为BC中点,∠GFC= ∠BAD=∠DFC.
∴△FGC≌△DFC(∠GFC=∠DFC,FC=FC,∠ACB=∠ACD).
∴CD=GC= BC.
∴BC=2CD.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询