如图,AD为△ABC的外接圆的直径
如图,AD为三角形ABC外接圆的直径,AD垂直于BC,垂足为F,角ABC的平分线交AD于点E,连接BD,CD(1)求证:BD=CD(2)请判断B,E,C三点是否在以D为圆...
如图,AD为三角形ABC外接圆的直径,AD垂直于BC,垂足为F,角ABC的平分线交AD于点E,连接BD,CD
(1)求证:BD=CD
(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?
第二题中为什么∠EBF=∠BAD 展开
(1)求证:BD=CD
(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?
第二题中为什么∠EBF=∠BAD 展开
展开全部
1、∵AD是直径,则必过圆心O,AD⊥BC,
即OF⊥BC,
∴F是BC的中点,(弦心距垂直平分弦),
∴AD是BC的垂直平分线,
∵D∈AD,
∴BD=CD。
2、∵AD是BC的垂直平分线,
∴AB=AC,
∴△ABC是等腰△,
∴AF是〈BAC平分线,
∵BE是〈ABC平分线,
∴E是内心,(三角形三条角平分线的交点)
∴CE是〈C平分线,
〈BEF=〈BAE+〈ABE=〈A/2+〈B/2,
〈EBD=〈B/2+〈FBD,
〈FBD=〈DAC=〈A/2,(同弧圆周角相等),
〈FBD=〈B/2+〈A/2,
∴〈DBE=〈DEB,
∴BD=DE,
同理可证DE=DC,
BD=DE=DC,
∴B、E、C三点在以D为圆心,以DB为半径的圆上。
∠EBF≠∠BAD,除非是正三角形。
汪经理
2024-11-01 广告
2024-11-01 广告
LS90-110系列固定式螺杆空压机是天津润诺泰机电科技有限公司的主打产品之一。该系列空压机采用高效电机和美国原装主机,能效卓越且噪音控制出色。其风冷/水冷/变频机型设计,确保在0℃至+40℃的环境温度下全天候稳定运行。LS90-110系列...
点击进入详情页
本回答由汪经理提供
展开全部
1、∵AD是直径,∴∠ABD=∠ACD=90°﹙直径所对的圆周角是直角﹚,
又AD⊥BC,∴AD平分BC,∴由等腰△三线合一定理得:
△ABC是等腰△,即AB=AC,
∴△ABD≌△ACD﹙HL﹚,
∴DB=DC。
2、由△ABD≌△ACD,
∴∠BAD=∠CAD,
又∠CAD=∠CBD﹙同弧所对的圆周角相等﹚,
∠BED=∠ABE+∠BAE,﹙外角定理﹚,
而∠ABE=∠FBE﹙角平分线定义﹚,
∴∠DBE=∠DEB,
∴DB=DE=DC,∴B、C、E三点在以D为圆心,DB为半径的圆上。
又AD⊥BC,∴AD平分BC,∴由等腰△三线合一定理得:
△ABC是等腰△,即AB=AC,
∴△ABD≌△ACD﹙HL﹚,
∴DB=DC。
2、由△ABD≌△ACD,
∴∠BAD=∠CAD,
又∠CAD=∠CBD﹙同弧所对的圆周角相等﹚,
∠BED=∠ABE+∠BAE,﹙外角定理﹚,
而∠ABE=∠FBE﹙角平分线定义﹚,
∴∠DBE=∠DEB,
∴DB=DE=DC,∴B、C、E三点在以D为圆心,DB为半径的圆上。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1、∵AD是直径,则必过圆心O,AD⊥BC,
即OF⊥BC,
∴F是BC的中点,(弦心距垂直平分弦),
∴AD是BC的垂直平分线,
∵D∈AD,
∴BD=CD。
2、∵AD是BC的垂直平分线,
∴AB=AC,
∴△ABC是等腰△,
∴AF是〈BAC平分线,
∵BE是〈ABC平分线,
∴E是内心,(三角形三条角平分线的交点)
∴CE是〈C平分线,
〈BEF=〈BAE+〈ABE=〈A/2+〈B/2,
〈EBD=〈B/2+〈FBD,
〈FBD=〈DAC=〈A/2,(同弧圆周角相等),
〈FBD=〈B/2+〈A/2,
∴〈DBE=〈DEB,
∴BD=DE,
同理可证DE=DC,
BD=DE=DC,
∴B、E、C三点在以D为圆心,以DB为半径的圆上。
∠EBF≠∠BAD,除非是正三角形。
即OF⊥BC,
∴F是BC的中点,(弦心距垂直平分弦),
∴AD是BC的垂直平分线,
∵D∈AD,
∴BD=CD。
2、∵AD是BC的垂直平分线,
∴AB=AC,
∴△ABC是等腰△,
∴AF是〈BAC平分线,
∵BE是〈ABC平分线,
∴E是内心,(三角形三条角平分线的交点)
∴CE是〈C平分线,
〈BEF=〈BAE+〈ABE=〈A/2+〈B/2,
〈EBD=〈B/2+〈FBD,
〈FBD=〈DAC=〈A/2,(同弧圆周角相等),
〈FBD=〈B/2+〈A/2,
∴〈DBE=〈DEB,
∴BD=DE,
同理可证DE=DC,
BD=DE=DC,
∴B、E、C三点在以D为圆心,以DB为半径的圆上。
∠EBF≠∠BAD,除非是正三角形。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
明:(1)∵AD为直径,AD⊥BC,
∴弧BD=弧CD
∴BD=CD.
(2)∵弧BD=弧CD
∴∠BAD=∠CBD,
∵∠ABC的平分线交AD于点E,
∴∠ABE=∠CBE,
∵∠DBE=∠CBE+∠CBD,∠BED=∠ABE+∠BAD,
∴∠BAD+∠ABE=∠CBD+∠EBF,
即∠BED=∠EBD,
∴BD=DE,
∴CD=DE.
这样对吗?
∴弧BD=弧CD
∴BD=CD.
(2)∵弧BD=弧CD
∴∠BAD=∠CBD,
∵∠ABC的平分线交AD于点E,
∴∠ABE=∠CBE,
∵∠DBE=∠CBE+∠CBD,∠BED=∠ABE+∠BAD,
∴∠BAD+∠ABE=∠CBD+∠EBF,
即∠BED=∠EBD,
∴BD=DE,
∴CD=DE.
这样对吗?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-03-27
展开全部
、∵AD是直径,则必过圆心O,AD⊥BC,
即OF⊥BC,
∴F是BC的中点,(弦心距垂直平分弦),
∴AD是BC的垂直平分线,
∵D∈AD,
∴BD=CD。
2、∵AD是BC的垂直平分线,
∴AB=AC,
∴△ABC是等腰△,
∴AF是〈BAC平分线,
∵BE是〈ABC平分线,
∴E是内心,(三角形三条角平分线的交点)
∴CE是〈C平分线,
〈BEF=〈BAE+〈ABE=〈A/2+〈B/2,
〈EBD=〈B/2+〈FBD,
〈FBD=〈DAC=〈A/2,(同弧圆周角相等),
〈FBD=〈B/2+〈A/2,
∴〈DBE=〈DEB,
∴BD=DE,
同理可证DE=DC,
BD=DE=DC,
∴B、E、C三点在以D为圆心,以DB为半径的圆上。
∠EBF≠∠BAD,除非是正三角形。
即OF⊥BC,
∴F是BC的中点,(弦心距垂直平分弦),
∴AD是BC的垂直平分线,
∵D∈AD,
∴BD=CD。
2、∵AD是BC的垂直平分线,
∴AB=AC,
∴△ABC是等腰△,
∴AF是〈BAC平分线,
∵BE是〈ABC平分线,
∴E是内心,(三角形三条角平分线的交点)
∴CE是〈C平分线,
〈BEF=〈BAE+〈ABE=〈A/2+〈B/2,
〈EBD=〈B/2+〈FBD,
〈FBD=〈DAC=〈A/2,(同弧圆周角相等),
〈FBD=〈B/2+〈A/2,
∴〈DBE=〈DEB,
∴BD=DE,
同理可证DE=DC,
BD=DE=DC,
∴B、E、C三点在以D为圆心,以DB为半径的圆上。
∠EBF≠∠BAD,除非是正三角形。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询