正方形ABCD中,有一以CB为直径的半圆,BC=2cm,现在有两点E,F
分别从点B、点A同时出发,点E沿线段BA以1㎝/秒的速度向点A运动,点F沿折线A—D—C以2㎝/秒的速度向点C运动。设点E离开点B的时间为t。(1)当t为何值时,线段EF...
分别从点B、点A同时出发,点E沿线段BA以1㎝/秒的速度向点A运动,点F沿折线A—D—C以2㎝/秒的速度向点C运动。设点E离开点B的时间为t。
(1)当t为何值时,线段EF与BC平行?
(2)设1<t<2,当t为何值时,EF与半圆相切 展开
(1)当t为何值时,线段EF与BC平行?
(2)设1<t<2,当t为何值时,EF与半圆相切 展开
2个回答
展开全部
(1)线段EF与BC平行时,点E在AB上,点F在CD上,必有:BE=CF.
BE=tcm,CF=(4-2t)cm.t=4-2t,t=4/3(秒);
即t=4/3秒时,线段EF与BC平行。
(2)1<t<2时,设EF切半圆于M,则EM=EB=tcm,MF=FC=(4-2t)cm.
故EF=t+(4-2t)=(4-t)cm.
作FH垂直AB于H,则FH=BC=2;EH=EB-BH=EB-CF=t-(4-2t)=3t-4.
EH²+FH²=EF²,(3t-4)²+4=(4-t)²,t=(2+√2)/2或(2-√2)/2. (2-√2)/2不合题意,舍去。
∴当t=(2+√2)/2秒时,EF与半圆相切。
BE=tcm,CF=(4-2t)cm.t=4-2t,t=4/3(秒);
即t=4/3秒时,线段EF与BC平行。
(2)1<t<2时,设EF切半圆于M,则EM=EB=tcm,MF=FC=(4-2t)cm.
故EF=t+(4-2t)=(4-t)cm.
作FH垂直AB于H,则FH=BC=2;EH=EB-BH=EB-CF=t-(4-2t)=3t-4.
EH²+FH²=EF²,(3t-4)²+4=(4-t)²,t=(2+√2)/2或(2-√2)/2. (2-√2)/2不合题意,舍去。
∴当t=(2+√2)/2秒时,EF与半圆相切。
展开全部
一,t有很多个值可让EF与CD平行,最近的一次是1*t=(2+2)-2*t,t =4/3秒
即BE=AC+DC-AF
二,如题那半圆只能内切,设圆心为X,切点为Y,则XY=1/2BC=1CM
要EF与圆相切,等于会构成一个直角梯形,BEFC,则XY是BEFC直角梯形二边BE和FC的中线
FC/XY=XY/BE
t时间后,FC=4-2*t,BE=1*t
(4-2*t)/1=1/1*t
t =±√2,
时间不能为负,所以结果是√2,根号2,约等于1.414秒
即BE=AC+DC-AF
二,如题那半圆只能内切,设圆心为X,切点为Y,则XY=1/2BC=1CM
要EF与圆相切,等于会构成一个直角梯形,BEFC,则XY是BEFC直角梯形二边BE和FC的中线
FC/XY=XY/BE
t时间后,FC=4-2*t,BE=1*t
(4-2*t)/1=1/1*t
t =±√2,
时间不能为负,所以结果是√2,根号2,约等于1.414秒
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询