如图(1)是用硬纸板做成的两个全等的直角三角形,,两直角边的长分别为a和b,斜边长为c图(2)是以c为直角
图(2)是以c为直角边的等腰直角三角形。请你开动脑筋,将它们拼成一个能证明勾股定理的图形.(3)假设图(1)中的直角三角形有若干个,你能运用图(1)中所给的直角三角形拼出...
图(2)是以c为直角边的等腰直角三角形。请你开动脑筋,将它们拼成一个能证明勾股定理的图形.
(3)假设图(1)中的直角三角形有若干个,你能运用图(1)中所给的直角三角形拼出另一种能证明勾股定理的图形吗?请图(3)中画出拼后的示意图(无需证明). 展开
(3)假设图(1)中的直角三角形有若干个,你能运用图(1)中所给的直角三角形拼出另一种能证明勾股定理的图形吗?请图(3)中画出拼后的示意图(无需证明). 展开
3个回答
展开全部
解:(1)是梯形;
(2)由上图我们根据梯形的面积公式可知,梯形的面积=12(a+b)(a+b).
从上图我们还发现梯形的面积=三个三角形的面积,即12ab+12ab+12c2.
两者列成等式化简即可得:a2+b2=c2;
(3)画边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边.
(2)由上图我们根据梯形的面积公式可知,梯形的面积=12(a+b)(a+b).
从上图我们还发现梯形的面积=三个三角形的面积,即12ab+12ab+12c2.
两者列成等式化简即可得:a2+b2=c2;
(3)画边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
AB=b,AC=c ,BC=a 可以得出BD=DE=EF=BF=(b-a)
整个大正方形的面积 等于S=c^2 ——(1)
整个大正方形的面积还等于四个三角形的面积加上里面校正方形BDEF的面积
S=4*0.5*a*b+(b-a)^2 ——(2)
由(1)、(2)可知c^2=4*0.5*a*b+(b-a)^2 =a^2 +b^2
所以c^2=a^2 +b^2 勾股定理得证
整个大正方形的面积 等于S=c^2 ——(1)
整个大正方形的面积还等于四个三角形的面积加上里面校正方形BDEF的面积
S=4*0.5*a*b+(b-a)^2 ——(2)
由(1)、(2)可知c^2=4*0.5*a*b+(b-a)^2 =a^2 +b^2
所以c^2=a^2 +b^2 勾股定理得证
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询