高三数列题
已知数列An满足:A1=A2=A3,A(n+1)=(A1A2A3……An)-1n≥3,记B(n-2)=(A1)平方+A2平方+……+An平方-A1A2A3……An(n≥3...
已知数列An满足:A1=A2=A3,A(n+1)=(A1A2A3……An)-1 n≥3 ,记B(n-2)=(A1)平方+A2平方+……+An平方-A1A2A3……An(n≥3)
(1)求证数列Bn为等差数列,并求其通项
(2)设Cn=1+1/(Bn平方)+1/(B(n+1)平方),数列√Cn
的前n项和为Sn,求证n<Sn<n+1
A1=A2=A3=2 展开
(1)求证数列Bn为等差数列,并求其通项
(2)设Cn=1+1/(Bn平方)+1/(B(n+1)平方),数列√Cn
的前n项和为Sn,求证n<Sn<n+1
A1=A2=A3=2 展开
2个回答
展开全部
解:(1)
B1=4;
B(n-1)=A1^2+A2^2+……+An^2+A(n+1)^2-A1A2A3……AnA(n+1)
=A1^2+A2^2+……+An^2+A(n+1)*(A(n+1)-A1A2A3……An)
=A1^2+A2^2+……+An^2-A(n+1)
=A1^2+A2^2+……+An^2-A1A2A3……An+1
=B(n-2)+1 n>=3
B(n)=n+3的等差数列;
(2)
√Cn=√[1+1/(n+3)^2+1/(n+4)^2]>1;
Sn>n;
√Cn-1=√[1+1/(n+3)^2+1/(n+4)^2]-1
=[1/(n+3)^2+1/(n+4)^2]/{√[1+1/(n+3)^2+1/(n+4)^2]+1}
<[1/(n+3)^2+1/(n+4)^2]/2
<1/(n+3)^2
<1/(n+2)(n+3)
=1/(n+2)-1/(n+3)
Sn<n+1/3-1/(n+3)<n+1;
综上所述:n<Sn<n+1
B1=4;
B(n-1)=A1^2+A2^2+……+An^2+A(n+1)^2-A1A2A3……AnA(n+1)
=A1^2+A2^2+……+An^2+A(n+1)*(A(n+1)-A1A2A3……An)
=A1^2+A2^2+……+An^2-A(n+1)
=A1^2+A2^2+……+An^2-A1A2A3……An+1
=B(n-2)+1 n>=3
B(n)=n+3的等差数列;
(2)
√Cn=√[1+1/(n+3)^2+1/(n+4)^2]>1;
Sn>n;
√Cn-1=√[1+1/(n+3)^2+1/(n+4)^2]-1
=[1/(n+3)^2+1/(n+4)^2]/{√[1+1/(n+3)^2+1/(n+4)^2]+1}
<[1/(n+3)^2+1/(n+4)^2]/2
<1/(n+3)^2
<1/(n+2)(n+3)
=1/(n+2)-1/(n+3)
Sn<n+1/3-1/(n+3)<n+1;
综上所述:n<Sn<n+1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询