已知在平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F.点G,H分别是AD,BC的中点,GH交BD于点O.试证明
已知在平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F.点G,H分别是AD,BC的中点,GH交BD于点O.试证明:GH,EF互相平分....
已知在平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F.点G,H分别是AD,BC的中点,GH交BD于点O.试证明:GH,EF互相平分.
展开
5个回答
展开全部
连结GB,DH,GH与BD交与O
因为四边形ABCD是平行四边形
∴AB//CD,AB=CD(平行四边形对边相等,平行)
点G,H分别是AD与BC的中点
所以GD=BH
∴∠ABD=∠BDC
∵AE⊥BD,CF⊥BD
∴∠AEB=∠DFC
在△AEB与△CFD中
∠AEB=∠DFC
∠ABD=∠BDC
AB=CD
∴三角形AEB≌△CFD(AAS)
∴BE=DF
因为四边形GBHD是平行四边形(一组对边平行且相等的四边形是平行四边形)
∴BO=OD,GO=GH(平行四边形对角线互相平分)
所以EF和GH互相平分
因为四边形ABCD是平行四边形
∴AB//CD,AB=CD(平行四边形对边相等,平行)
点G,H分别是AD与BC的中点
所以GD=BH
∴∠ABD=∠BDC
∵AE⊥BD,CF⊥BD
∴∠AEB=∠DFC
在△AEB与△CFD中
∠AEB=∠DFC
∠ABD=∠BDC
AB=CD
∴三角形AEB≌△CFD(AAS)
∴BE=DF
因为四边形GBHD是平行四边形(一组对边平行且相等的四边形是平行四边形)
∴BO=OD,GO=GH(平行四边形对角线互相平分)
所以EF和GH互相平分
展开全部
连结GB,DH,GH与BD交与O
因为四边形ABCD是平行四边形
∴AB//CD,AB=CD(平行四边形对边相等,平行)
点G,H分别是AD与BC的中点
所以GD=BH
∴∠ABD=∠BDC
∵AE⊥BD,CF⊥BD
∴∠AEB=∠DFC
在△AEB与△CFD中
∠AEB=∠DFC
∠ABD=∠BDC
AB=CD
∴三角形AEB≌△CFD(AAS)
∴BE=DF
因为四边形GBHD是平行四边形(一组对边平行且相等的四边形是平行四边形)
∴BO=OD,GO=GH(平行四边形对角线互相平分)
∴EF和GH互相平分
差不多了
因为四边形ABCD是平行四边形
∴AB//CD,AB=CD(平行四边形对边相等,平行)
点G,H分别是AD与BC的中点
所以GD=BH
∴∠ABD=∠BDC
∵AE⊥BD,CF⊥BD
∴∠AEB=∠DFC
在△AEB与△CFD中
∠AEB=∠DFC
∠ABD=∠BDC
AB=CD
∴三角形AEB≌△CFD(AAS)
∴BE=DF
因为四边形GBHD是平行四边形(一组对边平行且相等的四边形是平行四边形)
∴BO=OD,GO=GH(平行四边形对角线互相平分)
∴EF和GH互相平分
差不多了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
连结GB,DH,GH与BD交与O
因为四边形ABCD是平行四边形
∴AB//CD,AB=CD(平行四边形对边相等,平行)
点G,H分别是AD与BC的中点
所以GD=BH
∴∠ABD=∠BDC
∵AE⊥BD,CF⊥BD
∴∠AEB=∠DFC
在△AEB与△CFD中
∠AEB=∠DFC
∠ABD=∠BDC
AB=CD
∴三角形AEB≌△CFD(AAS)
∴BE=DF
因为四边形GBHD是平行四边形(一组对边平行且相等的四边形是平行四边形)
∴BO=OD,GO=GH(平行四边形对角线互相平分)
所以EF和GH互相平分
因为四边形ABCD是平行四边形
∴AB//CD,AB=CD(平行四边形对边相等,平行)
点G,H分别是AD与BC的中点
所以GD=BH
∴∠ABD=∠BDC
∵AE⊥BD,CF⊥BD
∴∠AEB=∠DFC
在△AEB与△CFD中
∠AEB=∠DFC
∠ABD=∠BDC
AB=CD
∴三角形AEB≌△CFD(AAS)
∴BE=DF
因为四边形GBHD是平行四边形(一组对边平行且相等的四边形是平行四边形)
∴BO=OD,GO=GH(平行四边形对角线互相平分)
所以EF和GH互相平分
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
连结GB,DH,GH与BD交与O
因为四边形ABCD是平行四边形
∴AB//CD,AB=CD(平行四边形对边相等,平行)
点G,H分别是AD与BC的中点
所以GD=BH
∴∠ABD=∠BDC
∵AE⊥BD,CF⊥BD
∴∠AEB=∠DFC
在△AEB与△CFD中
∠AEB=∠DFC
∠ABD=∠BDC
AB=CD
∴三角形AEB≌△CFD(AAS)
∴BE=DF
因为四边形GBHD是平行四边形(一组对边平行且相等的四边形是平行四边形)
∴BO=OD,GO=GH(平行四边形对角线互相平分)
所以EF和GH互相平分
因为四边形ABCD是平行四边形
∴AB//CD,AB=CD(平行四边形对边相等,平行)
点G,H分别是AD与BC的中点
所以GD=BH
∴∠ABD=∠BDC
∵AE⊥BD,CF⊥BD
∴∠AEB=∠DFC
在△AEB与△CFD中
∠AEB=∠DFC
∠ABD=∠BDC
AB=CD
∴三角形AEB≌△CFD(AAS)
∴BE=DF
因为四边形GBHD是平行四边形(一组对边平行且相等的四边形是平行四边形)
∴BO=OD,GO=GH(平行四边形对角线互相平分)
所以EF和GH互相平分
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-11-01
展开全部
连接GB,DH,GH与BD交与O
∵四边形ABCD是平行四边形
∴AB//CD,AB=CD
又∵点G,H分别是AD与BC的中点
∴GD=BH
∴∠ABD=∠BDC
∵AE⊥BD,CF⊥BD
∴∠AEB=∠DFC
在△AEB与△CFD中
∠AEB=∠DFC
∠ABD=∠BDC
AB=CD
∴三角形AEB≌△CFD(AAS)
∴BE=DF
∵四边形GBHD是平行四边形
∴BO=OD,GO=GH
∴EF和GH互相平分
∵四边形ABCD是平行四边形
∴AB//CD,AB=CD
又∵点G,H分别是AD与BC的中点
∴GD=BH
∴∠ABD=∠BDC
∵AE⊥BD,CF⊥BD
∴∠AEB=∠DFC
在△AEB与△CFD中
∠AEB=∠DFC
∠ABD=∠BDC
AB=CD
∴三角形AEB≌△CFD(AAS)
∴BE=DF
∵四边形GBHD是平行四边形
∴BO=OD,GO=GH
∴EF和GH互相平分
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询