矩阵问题 若A^k=o(k为正整数) 求证(E-A)^(-1)=E+A+A^2+……+A^(K-1)
展开全部
因为 A^k = 0
所以 (E-A)(E+A+A^2+……+A^(K-1))
= E+A+A^2+……+A^(K-1) - AA^2+……-A^(K-1)-A^k
= E - A^k
= E
所以 E-A 可逆, 且 (E-A)^-1 = E+A+A^2+……+A^(K-1)
所以 (E-A)(E+A+A^2+……+A^(K-1))
= E+A+A^2+……+A^(K-1) - AA^2+……-A^(K-1)-A^k
= E - A^k
= E
所以 E-A 可逆, 且 (E-A)^-1 = E+A+A^2+……+A^(K-1)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询