展开全部
原式
=∫[0,a]√(a²-a²+2ax-x²)dx
=∫[0,a]√[a²-(x-a)²]dx
令x-a=asint,dx=acostdt
x=0时,t=-π/2;x=a时,t=0.
故原式=∫[-π/2,0]a²cos²tdt
=a²/2 ∫[-π/2,0](1+cos2t)dt
=a²/2 (t+½ sin2t)|[-π/2,0]
=a²/2 [(0+0)-(-π/2+0)]
=πa²/4
=∫[0,a]√(a²-a²+2ax-x²)dx
=∫[0,a]√[a²-(x-a)²]dx
令x-a=asint,dx=acostdt
x=0时,t=-π/2;x=a时,t=0.
故原式=∫[-π/2,0]a²cos²tdt
=a²/2 ∫[-π/2,0](1+cos2t)dt
=a²/2 (t+½ sin2t)|[-π/2,0]
=a²/2 [(0+0)-(-π/2+0)]
=πa²/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询