
已知sin(x-3π/4)cos(x-π/4)=-1/4,求cos4x。
3个回答
展开全部
解:∵sin(x-3π/4)cos(x-π/4)=-1/4
==>[sin((x-3π/4)+(x-π/4))+sin((x-3π/4)-(x-π/4))]/2=-1/4 (应用正弦积化和差公式)
==>sin(2x-π)+sin(-π/2)=-1/2
==>-sin(2x)-1=-1/2
==>sin(2x)=-1/2
∴cos(4x)=1-2sin²(2x) (应用余弦倍角公式)
=1-2(-1/2)²
=1/2
==>[sin((x-3π/4)+(x-π/4))+sin((x-3π/4)-(x-π/4))]/2=-1/4 (应用正弦积化和差公式)
==>sin(2x-π)+sin(-π/2)=-1/2
==>-sin(2x)-1=-1/2
==>sin(2x)=-1/2
∴cos(4x)=1-2sin²(2x) (应用余弦倍角公式)
=1-2(-1/2)²
=1/2
展开全部
解:∵sin(x-3π/4)cos(x-π/4)=-1/4
==>[sin((x-3π/4)+(x-π/4))+sin((x-3π/4)-(x-π/4))]/2=-1/4
(应用正弦积化和差公式)
==>sin(2x-π)+sin(-π/2)=-1/2
==>-sin(2x)-1=-1/2
==>sin(2x)=-1/2
∴cos(4x)=1-2sin²(2x)
(应用余弦倍角公式)
=1-2(-1/2)²
=1/2
==>[sin((x-3π/4)+(x-π/4))+sin((x-3π/4)-(x-π/4))]/2=-1/4
(应用正弦积化和差公式)
==>sin(2x-π)+sin(-π/2)=-1/2
==>-sin(2x)-1=-1/2
==>sin(2x)=-1/2
∴cos(4x)=1-2sin²(2x)
(应用余弦倍角公式)
=1-2(-1/2)²
=1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:sin(x-3π/4)cos(x-π/4)=-1/4
-1/4=[sin(x-3π/4+x-π/4)+sin(x-3π/4-x+π/4)]/2
sin(2x-π)+sin(-π/2)=-1/2
-sin2x-1=-1/2
sin2x=-1/2
cos4x=1-2(sin2x)²
=1-2(-1/2)²
=1/2
应用积化和差公式与倍角公式。
-1/4=[sin(x-3π/4+x-π/4)+sin(x-3π/4-x+π/4)]/2
sin(2x-π)+sin(-π/2)=-1/2
-sin2x-1=-1/2
sin2x=-1/2
cos4x=1-2(sin2x)²
=1-2(-1/2)²
=1/2
应用积化和差公式与倍角公式。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询