设f(x)=alnx+1/2x+3x/2+1,其中a属于r,曲线y=f(x)在点(1,f(1))处的切线垂直于y轴

 我来答
百度网友1d00219d4c1
2020-04-23 · TA获得超过2.9万个赞
知道大有可为答主
回答量:1.1万
采纳率:25%
帮助的人:760万
展开全部
(Ⅰ)解:∵f(x)=alnx+1/2x+3x/2+1,∴f`(x)=a/x-1/2x^2+3/2.曲线y=f(x)在点(1,f(1))处的切线垂直于Y轴。所以f`(1)=0.即f`(1)=a-1/2+3/2=0.a=-1.
(Ⅱ)解:a=-1,f(x)=-lnx+1/2x+3x/2+1,f`(x)=3/2-(2x+1)/2x^2.当f`(x)=0时即3/2=(2x+1)/2x^2→(3x+1)(x-1)=0.由x>0,所以x=1时,即f`(1)=0,f(x)有极值f(1)=3.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
佴芳洁玉民
2019-11-29 · TA获得超过2.9万个赞
知道大有可为答主
回答量:1.1万
采纳率:29%
帮助的人:671万
展开全部
(Ⅰ)解:∵f(x)=alnx+1/2x+3x/2+1,∴f`(x)=a/x-1/2x^2+3/2.曲线y=f(x)在点(1,f(1))处的切线垂直于Y轴。所以f`(1)=0.即f`(1)=a-1/2+3/2=0.
a=-1.

(Ⅱ)解:a=-1,f(x)=-lnx+1/2x+3x/2+1,f`(x)=3/2-(2x+1)/2x^2.
当f`(x)=0时即3/2=(2x+1)/2x^2→(3x+1)(x-1)=0.由x>0,所以x=1时,即f`(1)=0,f(x)有极值f(1)=
3.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式