设a的x次方=b的y次方=(ab)的z次方,且xyz不等于0,a和b均为不等于1的正数,证明z=x+y分之xy
4个回答
展开全部
由题得,a^x = b^y = a^z × b^z
a^x = a^z × b^z
可得,a^x ÷ a^z = b^z
a^(x - z) = b^z
又∵a^x = b^y
∴ (x - z) :x = z :y
zx = xy - zy
z(x + y) = xy
z = xy ÷ (x + y)
a^x = a^z × b^z
可得,a^x ÷ a^z = b^z
a^(x - z) = b^z
又∵a^x = b^y
∴ (x - z) :x = z :y
zx = xy - zy
z(x + y) = xy
z = xy ÷ (x + y)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
a^x=(ab)^z=a^z*b^z
a^(x-z)=b^z
b=a^[(x-z)/z] (1)
b^y=(ab)^z=a^z*b^z
b^(y-z)=a^z
b=a^[z/(y-z)] (2)
(1)=(2)
所以a^[(x-z)/z]=a^[z/(y-z)]
即(x-z)/z=z/(y-z)
z²=(x-z)(y-z)=xy-xz-yz+z²
z(x+y)=xy
故z=xy/(x+y)
a^(x-z)=b^z
b=a^[(x-z)/z] (1)
b^y=(ab)^z=a^z*b^z
b^(y-z)=a^z
b=a^[z/(y-z)] (2)
(1)=(2)
所以a^[(x-z)/z]=a^[z/(y-z)]
即(x-z)/z=z/(y-z)
z²=(x-z)(y-z)=xy-xz-yz+z²
z(x+y)=xy
故z=xy/(x+y)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你这道题因该是高一的吧,对数函数中的。
假设a^x=b^y=(ab)^z=k,所以x=loga(k),y=logb(k),z=logab(k),所以1/z=logk(ab)=logk(a)+logk(b)=1/x+1/y=(x+y)/xy,所以z=x+y分之xy
假设a^x=b^y=(ab)^z=k,所以x=loga(k),y=logb(k),z=logab(k),所以1/z=logk(ab)=logk(a)+logk(b)=1/x+1/y=(x+y)/xy,所以z=x+y分之xy
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询