化简:1/(1+1/a)+1/(1-1/a)/(1-1/a+1)/(1+1/a-1)
3个回答
展开全部
化简:[1/(1+1/a)+1/(1-1/a)]/[1-1/(a+1)]/[1+1/(a-1)]
解:原式=[a/(a+1)+a/(a-1)]÷(a/(a+1)÷(a/(a-1)
=[2a²/(a+1)(a-1)]×[(a+1)/a]×[(a-1)/a]
=[2a²/(a+1)(a-1)]×[(a+1)(a-1)/a²]
=2
①分子[1/(1+1/a)+1/(1-1/a)]上的中括号原题没有,是我加的,不知对不对?
②因为没有主分数线,因此无法判断是不是繁分数,只好当连除处理;若是繁分数,则应这样计算:
[a/(a+1)+a/(a-1)]/[(a/(a+1)÷(a/(a-1)]=[2a²/(a+1)(a-1)]/[(a-1)/a+1)]
=[2a²/(a+1)(a-1)]×[(a+1)/(a-1)]=2a²/(a-1)².
解:原式=[a/(a+1)+a/(a-1)]÷(a/(a+1)÷(a/(a-1)
=[2a²/(a+1)(a-1)]×[(a+1)/a]×[(a-1)/a]
=[2a²/(a+1)(a-1)]×[(a+1)(a-1)/a²]
=2
①分子[1/(1+1/a)+1/(1-1/a)]上的中括号原题没有,是我加的,不知对不对?
②因为没有主分数线,因此无法判断是不是繁分数,只好当连除处理;若是繁分数,则应这样计算:
[a/(a+1)+a/(a-1)]/[(a/(a+1)÷(a/(a-1)]=[2a²/(a+1)(a-1)]/[(a-1)/a+1)]
=[2a²/(a+1)(a-1)]×[(a+1)/(a-1)]=2a²/(a-1)².
展开全部
这是个连分式吗?层层算
(1-1/a+1)/(1+1/a-1)
=(a/(a+1))/(a/(a-1))
=(a-1)/(a+1)
1/(1-1/a)
=1/(a-1)
1/(1-1/a)/(1-1/a+1)/(1+1/a-1)
=1/(a-1)/[(a-1)/(a+1)]
=(a+1)/(a-1)^2
1/(1+1/a)=a/(a+1)
1/(1+1/a)+1/(1-1/a)/(1-1/a+1)/(1+1/a-1)
=a/(a+1)+(a+1)/(a-1)^2
=[a(a-1)^2-(a+1)^2]/[a(a-1)^2]
=(a^3-2a^2+a-a^2-2a-1)/[a(a-1)^2]
=(a^3-3a^2-a-1)/[a(a-1)^2]
(1-1/a+1)/(1+1/a-1)
=(a/(a+1))/(a/(a-1))
=(a-1)/(a+1)
1/(1-1/a)
=1/(a-1)
1/(1-1/a)/(1-1/a+1)/(1+1/a-1)
=1/(a-1)/[(a-1)/(a+1)]
=(a+1)/(a-1)^2
1/(1+1/a)=a/(a+1)
1/(1+1/a)+1/(1-1/a)/(1-1/a+1)/(1+1/a-1)
=a/(a+1)+(a+1)/(a-1)^2
=[a(a-1)^2-(a+1)^2]/[a(a-1)^2]
=(a^3-2a^2+a-a^2-2a-1)/[a(a-1)^2]
=(a^3-3a^2-a-1)/[a(a-1)^2]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1-1/a+1)/(1+1/a-1)=(a-1)/(a+1);
原式等于:1/(1+1/a)+1/(1-1/a)/(a-1)/(a+1)=a[(a-1)^2+(a+1)^2]/(a+1)(a-1)^2=a(2a^2+2)/(a+1)(a-1)^2
原式等于:1/(1+1/a)+1/(1-1/a)/(a-1)/(a+1)=a[(a-1)^2+(a+1)^2]/(a+1)(a-1)^2=a(2a^2+2)/(a+1)(a-1)^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询