等式的变形
2个回答
展开全部
恒等式(identities),数学概念,恒等式是无论其变量如何取值,等式永远成立的算式。[2]恒等式成立的范围是左右函数定义域的公共部分,两个独立的函数却各自有定义域,与x在非负实数集内是恒等的,而在实数集内是不恒等的。
恒等式有多个变量的,也有一个变量的,若恒等式两边就一个变量,恒等式就是两个 解析式之间的一种关系。它来源于e^ix=cosx+isinx(复数的三角表示),令x=π就得e^πi + 1 = 0。
“函数相等”与“恒等式”之间有什么关系,由“恒等式”能得出“函数相等”吗?
数学上,恒等式是无论其变量在给定的取值范围内取何值,等式永远成立的算式。恒等式有多个变量的,也有一个变量的,若恒等式两边就一个变量,恒等式就是两个 解析式之间的一种关系。给定两个解析式,如果对于它们的定义域(见函数)的公共部分(或公共部分的子集)的任一数或数组,都有相等的值,就称这两个解析式 是恒等的。
相关性质为:
1.若y=f(x)与y=g(x)有相同的定义域,对于定义域内的任一个x均有f(x)=g(x)则y=f(x)与y=g(x)是相等函数,同时两解析式必相同。
2.若y=f(x)与y=g(x)是相等函数,则两个函数的解析式相同,于是其中的参数都能对应相等。
不等式
一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。[3]
通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为<,≤,≥,> 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
恒等式有多个变量的,也有一个变量的,若恒等式两边就一个变量,恒等式就是两个 解析式之间的一种关系。它来源于e^ix=cosx+isinx(复数的三角表示),令x=π就得e^πi + 1 = 0。
“函数相等”与“恒等式”之间有什么关系,由“恒等式”能得出“函数相等”吗?
数学上,恒等式是无论其变量在给定的取值范围内取何值,等式永远成立的算式。恒等式有多个变量的,也有一个变量的,若恒等式两边就一个变量,恒等式就是两个 解析式之间的一种关系。给定两个解析式,如果对于它们的定义域(见函数)的公共部分(或公共部分的子集)的任一数或数组,都有相等的值,就称这两个解析式 是恒等的。
相关性质为:
1.若y=f(x)与y=g(x)有相同的定义域,对于定义域内的任一个x均有f(x)=g(x)则y=f(x)与y=g(x)是相等函数,同时两解析式必相同。
2.若y=f(x)与y=g(x)是相等函数,则两个函数的解析式相同,于是其中的参数都能对应相等。
不等式
一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。[3]
通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为<,≤,≥,> 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询