二进制的加法和乘法运算规则是什么?
6个回答
展开全部
二进制乘法和加法都是通过对二进制数的移位来实现的,移位相当于×2,计算机算根据给出的加法式子与乘法式子算要移多少位。
扩展:
1、二进制数据的表示法
二进制数据也是采用位置计数法,其位权是以2为底的幂。例如二进制数据110.11,其权的大小顺序为2^2、2^1、2^0、2^-1、2^-2。对于有n位整数,m位小数的二进制数据用加权系数展开式表示,可写为:
(a(n-1)a(n-2)…a(-m))2=a(n-1)×2^(n-1)+a(n-2)×2^(n-2)+……+a(1)×2^1+a(0)×2^0+a(-1)×2^(-1)+a(-2)×2^(-2)+……+a(-m)×2^(-m)
二进制数据一般可写为:(a(n-1)a(n-2)…a(1)a(0).a(-1)a(-2)…a(-m))2。
注意:
1.式中aj表示第j位的系数,它为0和1中的某一个数。
2.a(n-1)中的(n-1)为下标,输入法无法打出所以用括号括住,避免混淆。
3.2^2表示2的平方,以此类推。
【例1102】将二进制数据111.01写成加权系数的形式。
解:(111.01)2=(1×2^2)+(1×2^1)+(1×2^0)+(0×2^-1)+(1×2^-2)
二进制和十六进制,八进制一样,都以二的幂来进位的。
二进制数据的算术运算的基本规律和十进制数的运算十分相似。最常用的是加法运算和乘法运算。
1. 二进制加法
有四种情况: 0+0=0
0+1=1
1+0=1
1+1=10 进位为1
【例1103】求 (1101)2+(1011)2 的和
解:
1 1 0 1
+ 1 0 1 1
-------------------
1 1 0 0 0
2. 二进制乘法
有四种情况: 0×0=0
1×0=0
0×1=0
1×1=1
【例1104】求 (1110)2 乘(101)2 之积
解:
1 1 1 0
× 1 0 1
-----------------------
1 1 1 0
0 0 0 0
1 1 1 0
-------------------------
1 0 0 0 1 1 0
(这些计算就跟十进制的加或者乘法相同,只是进位的数不一样而已,十进制的是到十才进位这里是到2就进了)
3.二进制减法
0-0=0,1-0=1,1-1=0,10-1=1。
4.二进制除法
0÷1=0,1÷1=1。[1][2]
5.二进制拈加法
拈加法二进制加减乘除外的一种特殊算法。
拈加法运算与进行加法类似,但不需要做进位。此算法在博弈论(Game Theory)中被广泛利用。
十进制数转换为二进制数、八进制数、十六进制数的方法:
二进制数、八进制数、十六进制数转换为十进制数的方法:按权展开求和法
1.二进制与十进制间的相互转换:
(1)二进制转十进制
方法:“按权展开求和”
例: (1011.01)2 =(1×2^3+0×2^2+1×2^1+1×2^0+0×2^(-1)+1×2^(-2) )10
=(8+0+2+1+0+0.25)10
=(11.25)10
规律:个位上的数字的次数是0,十位上的数字的次数是1,......,依奖递增,而十
分位的数字的次数是-1,百分位上数字的次数是-2,......,依次递减。
注意:不是任何一个十进制小数都能转换成有限位的二进制数。
(2)十进制转二进制
· 十进制整数转二进制数:“除以2取余,逆序排列”(除二取余法)
例: (89)10 =(1011001)2
2 89 ……1
2 44 ……0
2 22 ……0
2 11 ……1
2 5 ……1
2 2 ……0
1
· 十进制小数转二进制数:“乘以2取整,顺序排列”(乘2取整法)
例: (0.625)10= (0.101)2
0.625X2=1.25 ……1
0.25 X2=0.50 ……0
0.50 X2=1.00 ……1
2.八进制与二进制的转换:
二进制数转换成八进制数:从小数点开始,整数部分向左、小数部分向右,每3位为一组用一位八进制数的数字表示,不足3位的要用“0”补足3位,就得到一个八进制数。
八进制数转换成二进制数:把每一个八进制数转换成3位的二进制数,就得到一个二进制数。
八进制数字与二进制数字对应关系如下:
000 -> 0 100 -> 4
001 -> 1 101 -> 5
010 -> 2 110 -> 6
011 -> 3 111 -> 7
例:将八进制的37.416转换成二进制数:
3 7 . 4 1 6
011 111 .100 001 110
即:(37.416)8 =(11111.10000111)2
例:将二进制的10110.0011 转换成八进制:
0 1 0 1 1 0 . 0 0 1 1 0 0
2 6 . 1 4
即:(10110.011)2 = (26.14)8
3.十六进制与二进制的转换:
二进制数转换成十六进制数:从小数点开始,整数部分向左、小数部分向右,每4位为一组用一位十六进制数的数字表示,不足4位的要用“0”补足4位,就得到一个十六进制数。
十六进制数转换成二进制数:把每一个十六进制数转换成4位的二进制数,就得到一个二进制数。
十六进制数字与二进制数字的对应关系如下:
0000 -> 0 0100 -> 4 1000 -> 8 1100 -> C
0001 -> 1 0101 -> 5 1001 -> 9 1101 -> D
0010 -> 2 0110 -> 6 1010 -> A 1110 -> E
0011 -> 3 0111 -> 7 1011 -> B 1111 -> F
例:将十六进制数5DF.9 转换成二进制:
5 D F . 9
0101 1101 1111 .1001
即:(5DF.9)16 =(10111011111.1001)2
例:将二进制数1100001.111 转换成十六进制:
0110 0001 . 1110
6 1 . E
即:(1100001.111)2 =(61.E)16
扩展:
1、二进制数据的表示法
二进制数据也是采用位置计数法,其位权是以2为底的幂。例如二进制数据110.11,其权的大小顺序为2^2、2^1、2^0、2^-1、2^-2。对于有n位整数,m位小数的二进制数据用加权系数展开式表示,可写为:
(a(n-1)a(n-2)…a(-m))2=a(n-1)×2^(n-1)+a(n-2)×2^(n-2)+……+a(1)×2^1+a(0)×2^0+a(-1)×2^(-1)+a(-2)×2^(-2)+……+a(-m)×2^(-m)
二进制数据一般可写为:(a(n-1)a(n-2)…a(1)a(0).a(-1)a(-2)…a(-m))2。
注意:
1.式中aj表示第j位的系数,它为0和1中的某一个数。
2.a(n-1)中的(n-1)为下标,输入法无法打出所以用括号括住,避免混淆。
3.2^2表示2的平方,以此类推。
【例1102】将二进制数据111.01写成加权系数的形式。
解:(111.01)2=(1×2^2)+(1×2^1)+(1×2^0)+(0×2^-1)+(1×2^-2)
二进制和十六进制,八进制一样,都以二的幂来进位的。
二进制数据的算术运算的基本规律和十进制数的运算十分相似。最常用的是加法运算和乘法运算。
1. 二进制加法
有四种情况: 0+0=0
0+1=1
1+0=1
1+1=10 进位为1
【例1103】求 (1101)2+(1011)2 的和
解:
1 1 0 1
+ 1 0 1 1
-------------------
1 1 0 0 0
2. 二进制乘法
有四种情况: 0×0=0
1×0=0
0×1=0
1×1=1
【例1104】求 (1110)2 乘(101)2 之积
解:
1 1 1 0
× 1 0 1
-----------------------
1 1 1 0
0 0 0 0
1 1 1 0
-------------------------
1 0 0 0 1 1 0
(这些计算就跟十进制的加或者乘法相同,只是进位的数不一样而已,十进制的是到十才进位这里是到2就进了)
3.二进制减法
0-0=0,1-0=1,1-1=0,10-1=1。
4.二进制除法
0÷1=0,1÷1=1。[1][2]
5.二进制拈加法
拈加法二进制加减乘除外的一种特殊算法。
拈加法运算与进行加法类似,但不需要做进位。此算法在博弈论(Game Theory)中被广泛利用。
十进制数转换为二进制数、八进制数、十六进制数的方法:
二进制数、八进制数、十六进制数转换为十进制数的方法:按权展开求和法
1.二进制与十进制间的相互转换:
(1)二进制转十进制
方法:“按权展开求和”
例: (1011.01)2 =(1×2^3+0×2^2+1×2^1+1×2^0+0×2^(-1)+1×2^(-2) )10
=(8+0+2+1+0+0.25)10
=(11.25)10
规律:个位上的数字的次数是0,十位上的数字的次数是1,......,依奖递增,而十
分位的数字的次数是-1,百分位上数字的次数是-2,......,依次递减。
注意:不是任何一个十进制小数都能转换成有限位的二进制数。
(2)十进制转二进制
· 十进制整数转二进制数:“除以2取余,逆序排列”(除二取余法)
例: (89)10 =(1011001)2
2 89 ……1
2 44 ……0
2 22 ……0
2 11 ……1
2 5 ……1
2 2 ……0
1
· 十进制小数转二进制数:“乘以2取整,顺序排列”(乘2取整法)
例: (0.625)10= (0.101)2
0.625X2=1.25 ……1
0.25 X2=0.50 ……0
0.50 X2=1.00 ……1
2.八进制与二进制的转换:
二进制数转换成八进制数:从小数点开始,整数部分向左、小数部分向右,每3位为一组用一位八进制数的数字表示,不足3位的要用“0”补足3位,就得到一个八进制数。
八进制数转换成二进制数:把每一个八进制数转换成3位的二进制数,就得到一个二进制数。
八进制数字与二进制数字对应关系如下:
000 -> 0 100 -> 4
001 -> 1 101 -> 5
010 -> 2 110 -> 6
011 -> 3 111 -> 7
例:将八进制的37.416转换成二进制数:
3 7 . 4 1 6
011 111 .100 001 110
即:(37.416)8 =(11111.10000111)2
例:将二进制的10110.0011 转换成八进制:
0 1 0 1 1 0 . 0 0 1 1 0 0
2 6 . 1 4
即:(10110.011)2 = (26.14)8
3.十六进制与二进制的转换:
二进制数转换成十六进制数:从小数点开始,整数部分向左、小数部分向右,每4位为一组用一位十六进制数的数字表示,不足4位的要用“0”补足4位,就得到一个十六进制数。
十六进制数转换成二进制数:把每一个十六进制数转换成4位的二进制数,就得到一个二进制数。
十六进制数字与二进制数字的对应关系如下:
0000 -> 0 0100 -> 4 1000 -> 8 1100 -> C
0001 -> 1 0101 -> 5 1001 -> 9 1101 -> D
0010 -> 2 0110 -> 6 1010 -> A 1110 -> E
0011 -> 3 0111 -> 7 1011 -> B 1111 -> F
例:将十六进制数5DF.9 转换成二进制:
5 D F . 9
0101 1101 1111 .1001
即:(5DF.9)16 =(10111011111.1001)2
例:将二进制数1100001.111 转换成十六进制:
0110 0001 . 1110
6 1 . E
即:(1100001.111)2 =(61.E)16
推荐于2017-09-02 · 知道合伙人教育行家
关注
展开全部
1、二进制的加法法则:
二进制的基数是2,进位规则是“逢2进1”故加法运算法则为:
(1)0+0=0
(2)0+1=1 1+0=1
(3)1+1=10(本位的0向高位进1)
2、二进制的乘法法则:
(1)0x0=0
(2)1x0=0,0x1=0
(3)1x1=1
二进制的基数是2,进位规则是“逢2进1”故加法运算法则为:
(1)0+0=0
(2)0+1=1 1+0=1
(3)1+1=10(本位的0向高位进1)
2、二进制的乘法法则:
(1)0x0=0
(2)1x0=0,0x1=0
(3)1x1=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
二进制加法四种情况:
0+0=0
0+1=1
1+0=1
1+1=10 进位为1【例1】求 (1101)2+(1011)2 的和
1 1 0 1
+ 1 0 1 1
-------------------
1 1 0 0 0
2. 二进制乘法四种情况:
0×0=0
1×0=0
0×1=0
1×1=1
【例1】求 (1110)2 乘(101)2 之积
1 1 1 0
× 1 0 1
-----------------------
1 1 1 0
0 0 0 0
1 1 1 0
-------------------------
1 0 0 0 1 1 0
拓展资料:
二进制是计算技术中广泛采用的一种数制。二进制数据是用0和1两个数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”,由18世纪德国数理哲学大师莱布尼兹发现。当前的计算机系统使用的基本上是二进制系统。
数据在计算机中主要是以补码的形式存储的。计算机中的二进制则是一个非常微小的开关,用“开”来表示1,“关”来表示0。
20世纪被称作第三次科技革命的重要标志之一的计算机的发明与应用,因为数字计算机只能识别和处理由‘0’.‘1’符号串组成的代码。其运算模式正是二进制。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1. 二进制加法
有四种情况:
0+0=0
0+1=1
1+0=1
1+1=0 进位为1
【例1103】求 (1101)2+(1011)2 的和
解: 1 1 0 1
+ 1 0 1 1
1 1 0 0 0
2. 二进制乘法
有四种情况:
0×0=0
1×0=0
0×1=0
1×1=1
【例1104】求 (1110)2 乘(101)2 之积
解: 1 1 1 0
× 1 0 1
1 1 1 0
0 0 0 0
1 1 1 0
1 0 0 0 1 1 0
有四种情况:
0+0=0
0+1=1
1+0=1
1+1=0 进位为1
【例1103】求 (1101)2+(1011)2 的和
解: 1 1 0 1
+ 1 0 1 1
1 1 0 0 0
2. 二进制乘法
有四种情况:
0×0=0
1×0=0
0×1=0
1×1=1
【例1104】求 (1110)2 乘(101)2 之积
解: 1 1 1 0
× 1 0 1
1 1 1 0
0 0 0 0
1 1 1 0
1 0 0 0 1 1 0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-10-27
展开全部
和十进制的加法和乘法差不多,只是进位自己仔细点就好了,其实不难的。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询