第五题第二问,我有四个答案,不知道是不是对的,求分析
展开全部
sin(-x).cos(π+x) = -2/5
(-sinx).(-cosx) =-2/5
sinx.cosx = -2/5 (1)
-2sinx.cosx = 4/5
1-2sinx.cosx = 9/5
(sinx-cosx)^2 =9/5
sinx - cosx =3√5/5 or -3√5/5 (舍去,因x不在第4象限) (2)
x∈(0, 3π/2)
=> x 在第2象限
To find: [1+tan(3π-x)]/sin(x-π)
[1+tan(3π-x)]/sin(x-π)
=[1+tan(π-x)]/sin(x-π)
=(1-tanx)/[-sin(π-x)]
=(1-tanx)/(-sinx)
=(tanx-1)/sinx)
=( sinx/cosx -1) /sinx
=(sinx-cosx)/(sinx.cosx)
=(-5/2)(sinx-cosx) ( from (1))
=(-5/2)(3√5/5) ( from (2))
=-3√5/2
(-sinx).(-cosx) =-2/5
sinx.cosx = -2/5 (1)
-2sinx.cosx = 4/5
1-2sinx.cosx = 9/5
(sinx-cosx)^2 =9/5
sinx - cosx =3√5/5 or -3√5/5 (舍去,因x不在第4象限) (2)
x∈(0, 3π/2)
=> x 在第2象限
To find: [1+tan(3π-x)]/sin(x-π)
[1+tan(3π-x)]/sin(x-π)
=[1+tan(π-x)]/sin(x-π)
=(1-tanx)/[-sin(π-x)]
=(1-tanx)/(-sinx)
=(tanx-1)/sinx)
=( sinx/cosx -1) /sinx
=(sinx-cosx)/(sinx.cosx)
=(-5/2)(sinx-cosx) ( from (1))
=(-5/2)(3√5/5) ( from (2))
=-3√5/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询