求证几何题
2个回答
北京埃德思远电气技术咨询有限公司
2023-07-25 广告
2023-07-25 广告
潮流计算是一种用于分析和计算电力系统中有功功率、无功功率、电压和电流分布的经典方法。它是在给定电力系统网络拓扑、元件参数和发电、负荷参量条件下,计算电力系统中各节点的有功功率、无功功率、电压和电流的实际运行情况。潮流计算主要用于研究电力系统...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
展开全部
(1)证明三角形ABC是等边三角形。这个问题其实IBM在 1998年出的一道智力题。原题链接请看http://domino.research.ibm.com/Comm/wwwr_ponder.nsf/challenges/August1998.html
IBM给出了几种不同的解法,请参见
http://domino.research.ibm.com/Comm/wwwr_ponder.nsf/Solutions/August1998.html
http://www.research.ibm.com/ponderthis/pdf/IBMPuzzle_Aug1998_Zhong_Nan.pdf
http://www.research.ibm.com/ponderthis/pdf/IBMPuzzle_Aug1998_Sandy_Jelly.pdf
(2)证明三角形AEH、BFI、CGD均为等边三角形并且他们三个彼此之间互相全等
以三角形AEH为例,∠A已知是60度,下面证明∠AHE=60度
四边形EFDH为圆的内接四边形,所以有∠EHD与∠EFD互补,
而∠EHD与∠AHE互补,所以得出∠AHE=∠EFD=60度
所以三角形AEH为等边三角形。同理,三角形BFI、CGD均为等边三角形
又因为AE=BF=CD,所以三个等边三角形的边长相等。
所以,三角形AEH、BFI、CGD均为等边三角形并且他们三个彼此之间互相全等
(3)证明三角形AHI全等于BFE,三角形CDF全等于BIG,以及三角形AED全等于CGH
以“三角形AHI全等于BFE”为例
AH=BF(由(1)中可知)
∠A=∠B=60°
AI=BE (因为AI=AE+EI,BE=BI+EI,并且AE=BI)
所以三角形AHI全等于BFE,所以HI=EF。
同理,三角形CDF全等于BIG,以及三角形AED全等于CGH。从而得出IG=DF,HG=ED
所以IHG也为正三角形并全等于三角形EFD
IBM给出了几种不同的解法,请参见
http://domino.research.ibm.com/Comm/wwwr_ponder.nsf/Solutions/August1998.html
http://www.research.ibm.com/ponderthis/pdf/IBMPuzzle_Aug1998_Zhong_Nan.pdf
http://www.research.ibm.com/ponderthis/pdf/IBMPuzzle_Aug1998_Sandy_Jelly.pdf
(2)证明三角形AEH、BFI、CGD均为等边三角形并且他们三个彼此之间互相全等
以三角形AEH为例,∠A已知是60度,下面证明∠AHE=60度
四边形EFDH为圆的内接四边形,所以有∠EHD与∠EFD互补,
而∠EHD与∠AHE互补,所以得出∠AHE=∠EFD=60度
所以三角形AEH为等边三角形。同理,三角形BFI、CGD均为等边三角形
又因为AE=BF=CD,所以三个等边三角形的边长相等。
所以,三角形AEH、BFI、CGD均为等边三角形并且他们三个彼此之间互相全等
(3)证明三角形AHI全等于BFE,三角形CDF全等于BIG,以及三角形AED全等于CGH
以“三角形AHI全等于BFE”为例
AH=BF(由(1)中可知)
∠A=∠B=60°
AI=BE (因为AI=AE+EI,BE=BI+EI,并且AE=BI)
所以三角形AHI全等于BFE,所以HI=EF。
同理,三角形CDF全等于BIG,以及三角形AED全等于CGH。从而得出IG=DF,HG=ED
所以IHG也为正三角形并全等于三角形EFD
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询