2个回答
展开全部
解:∵(x²+2y)³=2xy²+64
==>3(x²+2y)²(2x+y')=2(y²+2xyy') (等式两端对x求导数)
==>6x(x²+2y)²+3(x²+2y)²y'=2y²+4xyy'
==>[3(x²+2y)²-4xy]y'=2y²-6x(x²+2y)²
∴y'=[2y²-6x(x²+2y)²]/[3(x²+2y)²-4xy]
==>3(x²+2y)²(2x+y')=2(y²+2xyy') (等式两端对x求导数)
==>6x(x²+2y)²+3(x²+2y)²y'=2y²+4xyy'
==>[3(x²+2y)²-4xy]y'=2y²-6x(x²+2y)²
∴y'=[2y²-6x(x²+2y)²]/[3(x²+2y)²-4xy]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:∵(x²+2y)³=2xy²+64
==>3(x²+2y)²(2x+2y')=2(y²+2xyy') (等式两端对x求导数)
==>6x(x²+2y)²+6(x²+2y)²y'=2y²+4xyy'
==>[6(x²+2y)²-4xy]y'=2y²-6x(x²+2y)²
∴y'=[2y²-6x(x²+2y)²]/[6(x²+2y)²-4xy]
=[y²-3x(x²+2y)²]/[3(x²+2y)²-2xy]
==>3(x²+2y)²(2x+2y')=2(y²+2xyy') (等式两端对x求导数)
==>6x(x²+2y)²+6(x²+2y)²y'=2y²+4xyy'
==>[6(x²+2y)²-4xy]y'=2y²-6x(x²+2y)²
∴y'=[2y²-6x(x²+2y)²]/[6(x²+2y)²-4xy]
=[y²-3x(x²+2y)²]/[3(x²+2y)²-2xy]
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询