E,F分别是正方形ABCD的边BC,DC上的点,且∠EAF=45°,试说明EF=BE+DF
3个回答
东莞大凡
2024-11-14 广告
2024-11-14 广告
标定板认准大凡光学科技,专业生产研发厂家,专业从事光学影像测量仪,光学投影测量仪.光学三维测量仪,光学二维测量仪,光学二维测量仪,光学三维测量仪,光学二维测量仪.的研发生产销售。东莞市大凡光学科技有限公司创立于 2018 年,公司总部坐落于...
点击进入详情页
本回答由东莞大凡提供
展开全部
延长EB到G,使BG=DF,连接AG
∵ABCD是正方形
∴AB=AD ∠BAD=∠ABE=∠D=90°
∴ ∠ABG=∠D=90°
∴△ABG ≌△ADF
∴AG=AF ∠BAG=∠DAF
∵∠EAF=45°
∴ ∠BAE+∠DAF=90°-∠EAF=45°
∴ ∠BAE+∠BAG=45°
∴ ∠EAG=∠EAF
∵AE=AE AG=AF
∴△AEG ≌△AEF
∴EG=EF
∵EG=BE+BG=BE+DF
∴EF=BE+DF
延长CB至G,使BG=DF。
∵ABCD是正方形,∴∠ABG=∠ADF=90°,AB=AD,结合作出的BG=DF,
得:△ABG≌△ADF,∴∠BAG=∠DAF,AG=AF。
∵ABCD是正方形,∴∠BAD=∠BAG+∠EAF+∠DAF=90°,而∠EAF=45°,
∴∠DAF+∠BAE=45°。而∠BAG=∠DAF,∴∠BAG+∠BAE=45°,∴∠EAG=45°。
由∠EAF=45°,∠EAG=45°,得:∠EAG=∠EAF。
由AG=AF,AE=AE,∠EAG=∠EAF,得:△AEG≌△AEF,∴EG=EF,
而EG=BE+BG=BE+DF,∴EF=BE+DF。
∵ABCD是正方形
∴AB=AD ∠BAD=∠ABE=∠D=90°
∴ ∠ABG=∠D=90°
∴△ABG ≌△ADF
∴AG=AF ∠BAG=∠DAF
∵∠EAF=45°
∴ ∠BAE+∠DAF=90°-∠EAF=45°
∴ ∠BAE+∠BAG=45°
∴ ∠EAG=∠EAF
∵AE=AE AG=AF
∴△AEG ≌△AEF
∴EG=EF
∵EG=BE+BG=BE+DF
∴EF=BE+DF
延长CB至G,使BG=DF。
∵ABCD是正方形,∴∠ABG=∠ADF=90°,AB=AD,结合作出的BG=DF,
得:△ABG≌△ADF,∴∠BAG=∠DAF,AG=AF。
∵ABCD是正方形,∴∠BAD=∠BAG+∠EAF+∠DAF=90°,而∠EAF=45°,
∴∠DAF+∠BAE=45°。而∠BAG=∠DAF,∴∠BAG+∠BAE=45°,∴∠EAG=45°。
由∠EAF=45°,∠EAG=45°,得:∠EAG=∠EAF。
由AG=AF,AE=AE,∠EAG=∠EAF,得:△AEG≌△AEF,∴EG=EF,
而EG=BE+BG=BE+DF,∴EF=BE+DF。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
延长CB至G,使BG=DF。
∵ABCD是正方形,∴∠ABG=∠ADF=90°,AB=AD,结合作出的BG=DF,
得:△ABG≌△ADF,∴∠BAG=∠DAF,AG=AF。
∵ABCD是正方形,∴∠BAD=∠BAG+∠EAF+∠DAF=90°,而∠EAF=45°,
∴∠DAF+∠BAE=45°。而∠BAG=∠DAF,∴∠BAG+∠BAE=45°,∴∠EAG=45°。
由∠EAF=45°,∠EAG=45°,得:∠EAG=∠EAF。
由AG=AF,AE=AE,∠EAG=∠EAF,得:△AEG≌△AEF,∴EG=EF,
而EG=BE+BG=BE+DF,∴EF=BE+DF。
∵ABCD是正方形,∴∠ABG=∠ADF=90°,AB=AD,结合作出的BG=DF,
得:△ABG≌△ADF,∴∠BAG=∠DAF,AG=AF。
∵ABCD是正方形,∴∠BAD=∠BAG+∠EAF+∠DAF=90°,而∠EAF=45°,
∴∠DAF+∠BAE=45°。而∠BAG=∠DAF,∴∠BAG+∠BAE=45°,∴∠EAG=45°。
由∠EAF=45°,∠EAG=45°,得:∠EAG=∠EAF。
由AG=AF,AE=AE,∠EAG=∠EAF,得:△AEG≌△AEF,∴EG=EF,
而EG=BE+BG=BE+DF,∴EF=BE+DF。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询