矩阵合同的公式
1个回答
展开全部
合同矩阵:设A,B是两个n阶方阵,若存在可逆矩阵C,使得CATC=B
则称方阵A与B合同,记作 A≃B。
扩展资料
合同矩阵
合同矩阵,在线性代数,特别是二次型理论中,常常用到矩阵间的合同关系。两个矩阵A和B是合同的,当且仅当存在一个可逆矩阵 C,使得CTAC=B,则称方阵A合同于矩阵B。
中文名
合同矩阵
反身性
任意矩阵都与其自身合同;
对称性
A合同于B,则可以推出B合同于A
传递性
A合同于B,B合同于C
主条目
正定二次型定义
合同矩阵:设A,B是两个n阶方阵,若存在可逆矩阵C,使得
则称方阵A与B合同,记作 A≃B。
例题
一般在线代问题中,研究合同矩阵的场景是在二次型中。二次型用的矩阵是实对称矩阵。两个实对称矩阵合同的充要条件是它们的正负惯性指数相同。由这个条件可以推知,合同矩阵等秩。
性质
合同关系是一个等价关系,也就是说满足:
1、反身性:任意矩阵都与其自身合同;
2、对称性:A合同于B,则可以推出B合同于A;
3、传递性:A合同于B,B合同于C,则可以推出A合同于C;
4、合同矩阵的秩相同。
矩阵合同的主要判别法:
设A,B均为复数域上的n阶对称矩阵,则A与B在复数域上合同等价于A与B的秩相同.
设A,B均为实数域上的n阶对称矩阵,则A与B在实数域上合同等价于A与B有相同的正、负惯性指数(即正、负特征值的个数相等)。
资料来源网络若侵权联系删除
则称方阵A与B合同,记作 A≃B。
扩展资料
合同矩阵
合同矩阵,在线性代数,特别是二次型理论中,常常用到矩阵间的合同关系。两个矩阵A和B是合同的,当且仅当存在一个可逆矩阵 C,使得CTAC=B,则称方阵A合同于矩阵B。
中文名
合同矩阵
反身性
任意矩阵都与其自身合同;
对称性
A合同于B,则可以推出B合同于A
传递性
A合同于B,B合同于C
主条目
正定二次型定义
合同矩阵:设A,B是两个n阶方阵,若存在可逆矩阵C,使得
则称方阵A与B合同,记作 A≃B。
例题
一般在线代问题中,研究合同矩阵的场景是在二次型中。二次型用的矩阵是实对称矩阵。两个实对称矩阵合同的充要条件是它们的正负惯性指数相同。由这个条件可以推知,合同矩阵等秩。
性质
合同关系是一个等价关系,也就是说满足:
1、反身性:任意矩阵都与其自身合同;
2、对称性:A合同于B,则可以推出B合同于A;
3、传递性:A合同于B,B合同于C,则可以推出A合同于C;
4、合同矩阵的秩相同。
矩阵合同的主要判别法:
设A,B均为复数域上的n阶对称矩阵,则A与B在复数域上合同等价于A与B的秩相同.
设A,B均为实数域上的n阶对称矩阵,则A与B在实数域上合同等价于A与B有相同的正、负惯性指数(即正、负特征值的个数相等)。
资料来源网络若侵权联系删除
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询