已知AB=AC,AB的中垂线MN交AC于点D,交AB于点M,若BD平分角ABC,求AD/AC
展开全部
已知,DM垂直平分AB,可得:AD = BD ;
则有:∠A = ∠ABD = ∠CBD ,∠BDC = ∠A+∠ABD = ∠CBD+∠ABD = ∠ABC = ∠BCD ;
可得:BC = BD = AD ;
因为,在△BDC和△ABC中,∠CBD = ∠CAB ,∠C为公共角,
所以,△BDC ∽ △ABC ,
可得:BC/DC = AC/BC ;
令 AD/AC = k(k > 0),
则有:BC = AD = kAC ,DC = AC-AD = (1-k)AC ;
可得:BC/DC = k/(1-k) ,AC/BC = 1/k ,
所以,k/(1-k) = 1/k ,
解得:k = (√5-1)/2(舍去负值),
即有:AD/AC = (√5-1)/2 。
则有:∠A = ∠ABD = ∠CBD ,∠BDC = ∠A+∠ABD = ∠CBD+∠ABD = ∠ABC = ∠BCD ;
可得:BC = BD = AD ;
因为,在△BDC和△ABC中,∠CBD = ∠CAB ,∠C为公共角,
所以,△BDC ∽ △ABC ,
可得:BC/DC = AC/BC ;
令 AD/AC = k(k > 0),
则有:BC = AD = kAC ,DC = AC-AD = (1-k)AC ;
可得:BC/DC = k/(1-k) ,AC/BC = 1/k ,
所以,k/(1-k) = 1/k ,
解得:k = (√5-1)/2(舍去负值),
即有:AD/AC = (√5-1)/2 。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询