实对称矩阵合同一定相似吗?
2个回答
展开全部
实对称矩阵合同不一定相似。
实对称矩阵必定可以相似对角化,A相似于B,且a,b相似于同一个对角阵,又无论怎么样的可逆线性变换,二次型化到标准形或规范形,正负惯性系数p、q是不变的,所以这个对角阵上的特征值的正负个数就代表着A与B的p、q。即A,B合同了。
矩阵的应用
在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。作为解决线性方程的工具,矩阵也有不短的历史。
成书最迟在东汉前期的《九章算术》中,用分离系数法表示线性方程组,得到了其增广矩阵。在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧。
相当于矩阵的初等变换。但那时并没有现今理解的矩阵概念,虽然它与现有的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询