下列方程组无解 有唯一解 无穷解 a取什么值

ax+b+c=1x+ab+c=ax+b+ac=a^2... ax+b+c=1
x+ab+c=a
x+b+ac=a^2
展开
lry31383
高粉答主

2011-10-30 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.5万
采纳率:91%
帮助的人:1.7亿
展开全部
经典题目.

λ取何值时非齐次线性方程组有唯一解,无解,有无穷解
λX1+X2+X3=1
X1+λX2+X3=λ
X1+X2+λX3=λ^2

方法一
增广矩阵为
λ 1 1 1
1 λ 1 λ
1 1 λ λ^2

r1-λr2,r2-r3
0 1-λ^2 1-λ 1-λ^2
0 λ-1 1-λ λ(1-λ)
1 1 λ λ^2

r1+(λ+1)r2
0 0 (1-λ)(2+λ) (1-λ)(1+λ)^2
0 λ-1 1-λ λ(1-λ)
1 1 λ λ^2

r1<->r3
1 1 λ λ^2
0 λ-1 1-λ λ(1-λ)
0 0 (1-λ)(2+λ) (1-λ)(1+λ)^2

所以,
当λ≠1 且λ≠-2 时, r(A)=r(增广矩阵)=3, 方程组有唯一解.
当λ=-2 时, r(A)=2, r(增广矩阵)=3, 方程组无解.
当λ=1 时, r(A)=1=r(增广矩阵)<3, 方程组有无穷多解.
[注:该方法难点在化梯矩阵, 化成梯矩阵后就简单了]

方法二
先计算系数矩阵的行列式
λ 1 1
1 λ 1
1 1 λ
= (λ+2)(λ-1)^2.

当λ≠1 且λ≠-2 时, 由Crammer法则知有唯一解.

当λ=1时, 增广矩阵为
1 1 1 1
1 1 1 1
1 1 1 1
->
1 1 1 1
0 0 0 0
0 0 0 0
通解为: (1,0,0)'+c1(-1,1,0)'+c2(-1,0,1)'

当λ=-2时, 增广矩阵为
-2 1 1 1
1 -2 1 -2
1 1 -2 4

r3+r1+r2
-2 1 1 1
1 -2 1 -2
0 0 0 3
此时方程组无解.
[注: 此方法只在方程组的方程个数与未知量个数相同时才能用]
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式