根号1-x^2的定积分是什么?
根号下1-x^2的积分为1/2*arcsinx+1/2*x*√(1-x^2)+C。
解:∫√(1-x^2)dx
令x=sint,那么∫√(1-x^2)dx=∫√(1-(sint)^2)dsint
=∫cost*costdt
=1/2*∫(1+cos2t)dt
=1/2*∫1dt+1/2*∫cos2tdt
=t/2+1/4*sin2t+C
非负性
在实数范围内
(1)偶次根号下不能为负数,其运算结果也不为负。
(2)奇次根号下可以为负数。
不限于实数,即考虑虚数时,偶次根号下可以为负数,利用【i=√-1】即可。
根号下1-x^2的积分为1/2*arcsinx+1/2*x*√(1-x^2)+C。
解:∫√(1-x^2)dx
令x=sint,那么∫√(1-x^2)dx=∫√(1-(sint)^2)dsint
=∫cost*costdt
=1/2*∫(1+cos2t)dt
=1/2*∫1dt+1/2*∫cos2tdt
=t/2+1/4*sin2t+C
这里应注意定积分与不定积分之间的关系:
若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系牛顿-莱布尼茨公式。
一个函数可以存在不定积分,而不存在定积分,也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分,若只有有限个间断点,则定积分存在,若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。