如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,
如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,点P、D为边AB、AC上的点,且PD垂直于AB,点E是射线DC上一点,且∠EPD=∠A.(1)求证:△EDP∽△...
如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,点P 、D 为边AB 、AC 上的点,且PD垂直于AB ,点E是射线DC上一点,且∠EPD=∠A.
(1)求证:△EDP∽△EPA;
(2)当tan∠EBC=1/3 ,求线段AD的长.
求解答,最好一个小时内题目看清 展开
(1)求证:△EDP∽△EPA;
(2)当tan∠EBC=1/3 ,求线段AD的长.
求解答,最好一个小时内题目看清 展开
展开全部
(1)证明:因为∠EPD=∠A;且△EDP与△EPA公用∠E;由角角定理(两角对应相等两三角形相似)可证两三角形相似;
(2)已知∠C=90°则∠ECB=90°,
则tan∠EBC = CE/BC=1/3;
以为BC=3;所以CE=1;
AC=4;所以AE=5;
且因为DP垂直有AB;可知△APD~ACB;
即DP/AP=3/4;
因为:△EDP∽△EPA
ED/EP=EP/AE=DP/AP=3/4;
则PE平方=ED*AE;
于是PE=15/4;
ED=45/16;
AD=AE-ED=35/16;
(2)已知∠C=90°则∠ECB=90°,
则tan∠EBC = CE/BC=1/3;
以为BC=3;所以CE=1;
AC=4;所以AE=5;
且因为DP垂直有AB;可知△APD~ACB;
即DP/AP=3/4;
因为:△EDP∽△EPA
ED/EP=EP/AE=DP/AP=3/4;
则PE平方=ED*AE;
于是PE=15/4;
ED=45/16;
AD=AE-ED=35/16;
追问
上面的你把AE=4再算便谢谢
展开全部
1)证明:因为∠EPD=∠A;且△EDP与△EPA公用∠E;由角角定理(两角对应相等两三角形相似)可证两三角形相似;
(2)已知∠C=90°则∠ECB=90°,
则tan∠EBC = CE/BC=1/3;
以为BC=3;所以CE=1;
AC=4;所以AE=5;
且因为DP垂直有AB;可知△APD~ACB;
即DP/AP=3/4;
因为:△EDP∽△EPA
ED/EP=EP/AE=DP/AP=3/4;
则PE平方=ED*AE;
于是PE=15/4;
ED=45/16;
AD=AE-ED=35/16;
(2)已知∠C=90°则∠ECB=90°,
则tan∠EBC = CE/BC=1/3;
以为BC=3;所以CE=1;
AC=4;所以AE=5;
且因为DP垂直有AB;可知△APD~ACB;
即DP/AP=3/4;
因为:△EDP∽△EPA
ED/EP=EP/AE=DP/AP=3/4;
则PE平方=ED*AE;
于是PE=15/4;
ED=45/16;
AD=AE-ED=35/16;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
第(1)题求证,利用两角相等,∠EPD=∠A,∠PED=∠AEP
第(2)题求解,先由tan∠EBC=1/3求出CE=1,再利用第(1)小题的两三角形相似得出EP=15/4,进而得出DE=45/16,最后求出AD=35/16
第(2)题求解,先由tan∠EBC=1/3求出CE=1,再利用第(1)小题的两三角形相似得出EP=15/4,进而得出DE=45/16,最后求出AD=35/16
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询