3个回答
展开全部
在三角形AOB和三角形COD相似,假设三角形AOB的高h1,三角形COD的高h2.则有h1/h2=AB/CD
S△AOB/S△COD=h1*AB/(h2*CD)=(AB/CD)^2,所以得到:S△AOB=20*(AB/CD)^2,那么S△BOC=5-20*(AB/CD)^2
AO/CO=AB/CD=S△ABC/S△BCD=5/(20+5-20*(AB/CD)^2).设AB/CD=x,则x=5/(25-20x^2)
解方程得到AO/CO=AB/CD=(√2-1)/2
S△COB=5-20*(√2-1)^2/4=10*√2-10
S△ACD=S△BCD=S△COD+S△COB=20+10*√2-10=10*√2+10
S△AOB/S△COD=h1*AB/(h2*CD)=(AB/CD)^2,所以得到:S△AOB=20*(AB/CD)^2,那么S△BOC=5-20*(AB/CD)^2
AO/CO=AB/CD=S△ABC/S△BCD=5/(20+5-20*(AB/CD)^2).设AB/CD=x,则x=5/(25-20x^2)
解方程得到AO/CO=AB/CD=(√2-1)/2
S△COB=5-20*(√2-1)^2/4=10*√2-10
S△ACD=S△BCD=S△COD+S△COB=20+10*√2-10=10*√2+10
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设AO/CO=a,则S△ABO/S△BOC=a
△ABO相似与△CDO,则它们的面积之比等于对应边之比的平方,就是a²,根据这个条件列出式子即可就得a。其中△ABO的面积可以根据AO与CO之比a表示出来(因为ABO和COB同高,所以面积之比为底之比,而它们的面积和你又知道)
求出a后,三角形CDO的面积已知了,那么ADO的面积也可以根据底的比求出,因为它们两个也是同高,第二问得解
具体结果就不告你啦孩子,自己动手吧~
△ABO相似与△CDO,则它们的面积之比等于对应边之比的平方,就是a²,根据这个条件列出式子即可就得a。其中△ABO的面积可以根据AO与CO之比a表示出来(因为ABO和COB同高,所以面积之比为底之比,而它们的面积和你又知道)
求出a后,三角形CDO的面积已知了,那么ADO的面积也可以根据底的比求出,因为它们两个也是同高,第二问得解
具体结果就不告你啦孩子,自己动手吧~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询