伴随阵里面的元素都是原矩阵里对应元素的代数余子式,有一个元素不为0就说明原n阶矩阵至少有一个元素的代数余子式不为0,那个不为0的代数余子式的阶数(n-1)就是原矩阵极大无关组的阶数(因为只要有一组相关,行列式就是0了),所以原n阶矩阵的秩数至少是n-1了。
性质:
伴随矩阵是矩阵理论及线性代数中的一个基本概念,是许多数学分支研究的重要工具,伴随矩阵的一些新的性质被不断发现与研究。伴随矩阵的一些基本性质如下。
主对角元素是将原矩阵该元素所在行列去掉再求行列式,非主对角元素是原矩阵该元素的共轭位置的元素去掉所在行列求行列式乘以为该元素的共轭位置的元素的行和列的序号,序号从1开始。