如何运用极限存在准则证明极限?
1个回答
展开全部
以运用极限准则证明lim[n→∞]√(1+(1/n))=1为例:
解:令xn=√(1+(1/n)),易证xn,单调减少,且大于零,所以由极限存在准则,lim[n→∞]xn(存在)=a,且a≥0。又由极限的四则运算法则,a^2=lim[n→∞](xn)^2=lim[n→∞](1+(1/n))=1,因此得到a≥0且a^2=1,故a=1。所以lim[n→∞]√(1+(1/n))=lim[n→∞]xn=a=1。得证。
解决问题的极限思想:
极限思想方法,是数学分析乃至全部高等数学必不可少的一种重要方法,也是‘数学分析’与在‘初等数学’的基础上有承前启后连贯性的、进一步的思维的发展。
数学分析之所以能解决许多初等数学无法解决的问题(例如求瞬时速度、曲线弧长、曲边形面积、曲面体的体积等问题),正是由于其采用了‘极限’的‘无限逼近’的思想方法,才能够得到无比精确的计算答案。
人们通过考察某些函数的一连串数不清的越来越精密的近似值的趋向,趋势,可以科学地把那个量的极准确值确定下来,这需要运用极限的概念和以上的极限思想方法。要相信, 用极限的思想方法是有科学性的,因为可以通过极限的函数计算方法得到极为准确的结论。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询