Y=(1+X) / (1-X)^(1/2) 求Y的100阶导数
1个回答
展开全部
y = (1+x) / (1-x)^(1/2)
= [ 2-(1-x)]/ (1-x)^(1/2)
= 2*(1-x)^(-1/2)- (1-x)^(1/2)
y(100)
= [ 2*(1-x)^(-1/2)- (1-x)^(1/2) ] (100)
= 2 *[(1-x)^(-1/2)](100) - [(1-x)^(1/2)](100)
= 2 *(-1/2)(-3/2)...(-199/2)(1-x)^(-201/2)]
- (1/2)(-1/2)(-3/2)...(-197/2)[(1-x)^(-199/2)]
= 199!/2^99 * (1-x)^(-201/2) + 197!/2^100*[(1-x)^(-199/2)]
= [ 2-(1-x)]/ (1-x)^(1/2)
= 2*(1-x)^(-1/2)- (1-x)^(1/2)
y(100)
= [ 2*(1-x)^(-1/2)- (1-x)^(1/2) ] (100)
= 2 *[(1-x)^(-1/2)](100) - [(1-x)^(1/2)](100)
= 2 *(-1/2)(-3/2)...(-199/2)(1-x)^(-201/2)]
- (1/2)(-1/2)(-3/2)...(-197/2)[(1-x)^(-199/2)]
= 199!/2^99 * (1-x)^(-201/2) + 197!/2^100*[(1-x)^(-199/2)]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询