已知抛物线y=ax2+4ax+t与x轴的一个交点为A(-1,0)

已知:抛线物y=ax2+4ax+t与x轴的一个交点为A(-1,0).(1)求抛物线与x轴的另一个交点B的坐标;(2)D的抛物线与y轴的交点,C是抛物线上的一点,且以AB为... 已知:抛线物y=ax2+4ax+t与x轴的一个交点为A(-1,0).
(1)求抛物线与x轴的另一个交点B的坐标;
(2)D的抛物线与y轴的交点,C是抛物线上的一点,且以AB为一底的梯形ABCD的面积为9,求抛物线的解析式;
(3)E是第二象限内到x轴、y轴的距离的比为5:2的点,如果点E在(2)中的抛物线上,且它与点A在此抛物线对称轴的内侧,问:在抛物线的对称轴上是否存在点P,使△APE的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.
同侧同侧,打错了…………
展开
ljyaidyq
2012-11-16 · TA获得超过338个赞
知道答主
回答量:23
采纳率:0%
帮助的人:32.6万
展开全部
1)∵抛物线y=ax2+4ax+t与x轴的一个交点为A(-1,0)
∴a(-1)2+4a(-1)+t=0
∴t=3a
∴y=ax2+4ax+3a
∴D(0,3a)
令a(x2+4x+3)=0
得x=-1或-3
所以另一交点B的坐标为(-3,0).
∵在梯形ABCD中,AB‖CD,且点C在抛物线y=ax2+4ax+3a上
∴由抛物线对称性可知C(-4,3a)
∴AB=2,CD=4.又梯形ABCD的面积为9
∴1/2*(AB+CD)·OD=9
∴1/2*(2+4)·|3a|=9
解得a=±1
∴所求抛物线的解析式为:y=x2+4x+3,或y=-x2-4x-3
(2)设点E的坐标为(x0,y0)
依题意,得x0<0,y0>0,且|y0|/| x0|=5/2
∴y0=-5/2*x0
设点E在抛物线y=x2+4x+3上
则y0=x02+4x0+3
联立y0=-5/2*x0
解方程组得x0=-6 y0=15;x′0=-1/2,y′0=5/4
∵点E与点A在对称轴x=-2同侧
∴点E坐标为(-1/2,5/4)
设在抛物线的对称轴x=-2上存在一点P,使△APE的周长最小
∵AE长为定值
∴要使△APE的周长最小,只需PA+PE最小
∵点A关于对称轴x=-2的对称点是B(-3,0)
∴P是直线BE与对称轴x=-2的交点
设过点E、B的直线解析式为y=mx+n
-1/2m+n=5/4,
-3m+n=0
解得m=1/2,n=3/2
所以直线BE的解析式为y=(1/2)*x+3/2
把x=-2带入得y=1/2
所以点P的坐标为(-2,1/2)
当点E在抛物线y=-x2-4x-3上时
y0=-x02-4x0-3
y0=(-5/2)x0
方程组无解
即此时E点不存在
抛物线的对称轴上是否存在点P(-2,1/2),使三角形APE的周长最小
汲美宏卉
2019-03-13 · TA获得超过3704个赞
知道小有建树答主
回答量:3213
采纳率:29%
帮助的人:237万
展开全部
E在抛物线上,在第二象限,到x轴、y轴的距离的比为5:2,可算出E为(-0.5,1.25)找出A关于对称轴的对称点为B,连接BE交对称轴于点P即是所求因为AP一定,BP=AP,只需BP+PE最小,三角形两边之和大于第三边,三点在一条直线上时最小
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
manxc07
推荐于2016-12-01
知道答主
回答量:7
采纳率:0%
帮助的人:7.9万
展开全部
1.代入y(-1)=0得,t-3a=0 => t=3a. =>y(x)=ax2+4ax+3a=a(x+3)(x+1).于是,B=(-3,0).
2 D=y(0)=3a. 设c=(-b,3a)(因为与D平行),由抛物线性质,-b+0=-1-3. b=4;
Sabcd=(4+2)*3a/2=9, a=1
3 E满足的方程 2y+5x=0;
A与E 内侧?应该是同侧的意思吧,异测直接连线求交点即可。E为(-0.5,1.25)
因为A关于对称轴的对称点为B,求BE与对称轴的交点即是P.为什么不解释,求解留给你吧,祝好
追问
同侧同侧,打错了…………
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式