用拉格郎日定理证明:e∧x>xe(x>1)

斯巴达之红魂
2011-11-02
知道答主
回答量:18
采纳率:0%
帮助的人:15.9万
展开全部
设f(x)=e^x-xe(x>=1),则f(1)=0;
f(x)=f(x)-f(1)=f'(x')(x-1)
x'属于[1,x]
f'(x)=e^x-e,x>1时,f'(x)>0,
于是f(x)=f'(x')(x-1)>0
于是e^x>xe
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式