在矩形ABCD中,AB=4,AD=2,点M是AD的中点。点E是边AB上的一动点。连接EM并延长交射
在矩形ABCD中,AB=4,AD=2,点M是AD的中点。点E是边AB上的一动点。连接EM并延长交射线CD于点F,过M作EF的垂线BC的延长线于点G,连接EG,交边DC于点...
在矩形ABCD中,AB=4,AD=2,点M是AD的中点。点E是边AB上的一动点。连接EM并延长交射线CD于点F,过M作EF的垂线BC的延长线于点G,连接EG,交边DC于点Q。设AE的长为x,三角形EMG的面积为y。
(1)求∠MEG的正切值;
(2)求y关于x的函数解析式,并写出x的取值范围;
(3)线段MG的中点记为点P,连接CP,若▲PGC~▲EFQ,求y的值。
没有学圆,要求过程,今晚就要急!!!可加分
图 展开
(1)求∠MEG的正切值;
(2)求y关于x的函数解析式,并写出x的取值范围;
(3)线段MG的中点记为点P,连接CP,若▲PGC~▲EFQ,求y的值。
没有学圆,要求过程,今晚就要急!!!可加分
图 展开
2个回答
展开全部
(1)过M作MN⊥BC于N
则∠AME+∠EMN=90°
∠GMN+∠EMN=90°
∴∠AME=∠GMN
又∠A=∠MNG=90°
∴△AME∽△NMG
tan∠MEG = MG/ME = MN/AM = 4
(2)由(1)得MG=4ME
∴S(△EMG) = 1/2 * ME * MG = 2ME² = 2(x²+1)
∵G在BC延长线上
∴NG=4x > NC=1 即 x > 1/4
又E在AB上,∴x≤4
故 1/4 < x ≤ 4
(3)过P作PH⊥BG于H,过E作ER⊥CF于R
∵P是中点
∴PH=1/2 MN =2
∵△PGC∽△EFQ
且PH=ER=2【对应高相等】
∴△PGC≌△EFQ
∴FQ=CG=4x-1
QD = FQ-FD = 4x-1-x = 3x-1
CQ = 4 - QD = 5-3x
又△GCQ∽△GBE
∴GC/GB = CQ/BE
(4x-1) / (4x+1) = (5-3x) / (4-x)
解得 x = (3√2)/4
∴y= 2(x²+1) = 17/4
则∠AME+∠EMN=90°
∠GMN+∠EMN=90°
∴∠AME=∠GMN
又∠A=∠MNG=90°
∴△AME∽△NMG
tan∠MEG = MG/ME = MN/AM = 4
(2)由(1)得MG=4ME
∴S(△EMG) = 1/2 * ME * MG = 2ME² = 2(x²+1)
∵G在BC延长线上
∴NG=4x > NC=1 即 x > 1/4
又E在AB上,∴x≤4
故 1/4 < x ≤ 4
(3)过P作PH⊥BG于H,过E作ER⊥CF于R
∵P是中点
∴PH=1/2 MN =2
∵△PGC∽△EFQ
且PH=ER=2【对应高相等】
∴△PGC≌△EFQ
∴FQ=CG=4x-1
QD = FQ-FD = 4x-1-x = 3x-1
CQ = 4 - QD = 5-3x
又△GCQ∽△GBE
∴GC/GB = CQ/BE
(4x-1) / (4x+1) = (5-3x) / (4-x)
解得 x = (3√2)/4
∴y= 2(x²+1) = 17/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询