若xy独立 证明的D(xy)=D(X)D(Y)+(E(x))^2D(Y)+E((Y))^2D(x)

qiancheng16
2011-11-02 · TA获得超过790个赞
知道小有建树答主
回答量:233
采纳率:100%
帮助的人:79.5万
展开全部
DX=EX^2-(EX)^2
DY=EY^2-(EY)^2
EXY=EXEY

DXY=E(XY)^2-(EXY)^2=(EX^2)(EY^2)-(EXY)(EXY)=DXDY+EX^2(EY)^2+(EX)^2EY^2-2(EX)^2(EY)^2
=DXDY+(EX)^2(EY^2-(EY)^2)+(EY)^2(EX^2-(EX)^2)=D(X)D(Y)+(E(x))^2D(Y)+E((Y))^2D(x)
追问
谢谢了啊
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式