设α是n维向量 满足α^T*α=1 令A=E-α^T*α 证明 A是对称矩阵 A^2=A 即A是幂等矩阵 A不可逆

lry31383
高粉答主

2011-11-05 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.5万
采纳率:91%
帮助的人:1.6亿
展开全部
若α为n维列向量, 则 A 应该是 A=E-αα^T.

证明: (1) A^T = (E-αα^T)^T
= E^T-(α^T)^Tα^T
= E-αα^T
= A.
所以A是对称矩阵.

(2) A^2 = (E-αα^T)^2 = E - 2αα^T + α(α^Tα)α^T = E-αα^T = A.
即A^2 = A

(3) 若A可逆
则由 A^=A 得 A = E
则 αα^T = 0
即有 α = 0.
这与 α^Tα = 1 矛盾.
所以 |A| = 0.
电灯剑客
科技发烧友

2011-11-05 · 智能家居/数码/手机/智能家电产品都懂点
知道大有可为答主
回答量:1.2万
采纳率:83%
帮助的人:4975万
展开全部
题目都写错了,应该是A=E-αα^T
前两个结论自己验证,第三个结论只要利用Aa=0就行了。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式