已知函数f(x)=㏒a(x+1),g(x)=㏒a(1-x)(a﹥0,≠1)令F(x)=f(x)-g(x)

证明F(x)+F(Y)=F(x+y/1+xy)... 证明F(x)+F(Y)=F(x+y/1+xy) 展开
医院地址
2011-11-05 · 超过14用户采纳过TA的回答
知道答主
回答量:31
采纳率:0%
帮助的人:36.5万
展开全部
证明:因为 F(x)=f(x)-g(x)
=㏒a(x+1)-㏒a(1-x)
=㏒a[(x+1)/(1-x)]
F(x)的定义域为 (x+1)/(1-x)>0
解得 -1<x<1
所以 F(x)= ㏒a[(x+1)/(1-x)] ( -1<x<1)
等式左边 F(x)+F(Y)=㏒a[(X+1)/(1-X)] + ㏒a[(Y+1)/(1-Y)]
= ㏒a[(X+1)(Y+1)/(1-X)(1-Y)]
= ㏒a(X+Y+XY+1/1+XY-X-Y)
等式右边 F(X+Y/1+XY)=㏒a[(X+Y/1+XY)+1/1-(X+Y/1+XY)]
= ㏒a(X+Y+XY+1/1+XY-X-Y)
有上述两式可知 F(x)+F(Y)= F(X+Y/1+XY)
原式得证
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式