
如图,圆O是△ABC的外接圆,AB是圆O的直径,D是AB延长线上的一点,AE⊥DC交DC的延长线于点E,且AC平分∠EAB,
1个回答
展开全部
(1)证明:连接OC;
∵AC平分∠EAB,
∴∠EAC=∠BAC;
又在圆中OA=OC,
∴∠AC0=∠BAC,
∴∠EAC=∠ACO,
∴OC∥AE(内错角相等,两直线平行);
则由AE⊥DC知OC⊥DC,
即DC是⊙O的切线.
(2)∵∠D=∠D,∠E=∠OCD=90°,
∴△DCO∽△DEA,
∴BD=2;
∵Rt△EAC∽Rt△CAB.
∴AC2= 144/5
由勾股定理得
BC= 6根号5/5.
∵AC平分∠EAB,
∴∠EAC=∠BAC;
又在圆中OA=OC,
∴∠AC0=∠BAC,
∴∠EAC=∠ACO,
∴OC∥AE(内错角相等,两直线平行);
则由AE⊥DC知OC⊥DC,
即DC是⊙O的切线.
(2)∵∠D=∠D,∠E=∠OCD=90°,
∴△DCO∽△DEA,
∴BD=2;
∵Rt△EAC∽Rt△CAB.
∴AC2= 144/5
由勾股定理得
BC= 6根号5/5.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询