在⊿ABC中AC>BC,E.D分别是AC,BC上的点,且∠BAD=∠ABE,AE=BD,求证∠BAD=1/2∠C
2个回答
展开全部
证明:作∠OBF=∠OAE交AD于F,
∵∠BAD=∠ABE,
∴OA=OB.
又∠AOE=∠BOF,
∴△AOE≌△BOF(ASA).
∴AE=BF.
∵AE=BD,
∴BF=BD.
∴∠BDF=∠BFD.
∵∠BDF=∠C+∠OAE,
∠BFD=∠BOF+∠OBF,
∴∠BOF=∠C.
∵∠BOF=∠BAD+∠ABE=2∠BAD,
∴∠BAD= 1/2∠C,
∵∠BAD=∠ABE,
∴OA=OB.
又∠AOE=∠BOF,
∴△AOE≌△BOF(ASA).
∴AE=BF.
∵AE=BD,
∴BF=BD.
∴∠BDF=∠BFD.
∵∠BDF=∠C+∠OAE,
∠BFD=∠BOF+∠OBF,
∴∠BOF=∠C.
∵∠BOF=∠BAD+∠ABE=2∠BAD,
∴∠BAD= 1/2∠C,
追问
你可以画个示意图吗?
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询